picture
elementsource
element when used with the picture
elementimg
elementiframe
elementembed
elementobject
elementparam
elementvideo
elementaudio
elementsource
elementtrack
elementTrackEvent
interfacemap
elementarea
elementThis section is non-normative.
To embed an image in HTML, when there is only a single image resource,
use the img
element and its src
attribute.
<h2>From today's featured article</h2> <img src="/uploads/100-marie-lloyd.jpg" alt="" width="100" height="150"> <p><b><a href="/wiki/Marie_Lloyd">Marie Lloyd</a></b> (1870–1922) was an English <a href="/wiki/Music_hall">music hall</a> singer, ...
However, there are a number of situations for which the author might wish to use multiple image resources that the user agent can choose from:
Different users might have different environmental characteristics:
The users' physical screen size might be different from one another.
A mobile phone's screen might be 4 inches diagonally, while a laptop's screen might be 14 inches diagonally.
This is only relevant when an image's rendered size depends on the viewport size.
The users' screen pixel density might be different from one another.
A mobile phone's screen might have three times as many physical pixels per inch compared to another mobile phone's screen, regardless of their physical screen size.
The users' zoom level might be different from one another, or might change for a single user over time.
A user might zoom in to a particular image to be able to get a more detailed look.
The zoom level and the screen pixel density (the previous point) can both affect the number of physical screen pixels per CSS pixel. This ratio is usually referred to as device-pixel-ratio.
The users' screen orientation might be different from one another, or might change for a single user over time.
A tablet can be held upright or rotated 90 degrees, so that the screen is either "portrait" or "landscape".
The users' network speed, network latency and bandwidth cost might be different from one another, or might change for a single user over time.
A user might be on a fast, low-latency and constant-cost connection while at work, on a slow, low-latency and constant-cost connection while at home, and on a variable-speed, high-latency and variable-cost connection anywhere else.
Authors might want to show the same image content but with different rendered size depending on, usually, the width of the viewport. This is usually referred to as viewport-based selection.
A Web page might have a banner at the top that always spans the entire viewport width. In this case, the rendered size of the image depends on the physical size of the screen (assuming a maximised browser window).
Another Web page might have images in columns, with a single column for screens with a small physical size, two columns for screens with medium physical size, and three columns for screens with big physical size, with the images varying in rendered size in each case to fill up the viewport. In this case, the rendered size of an image might be bigger in the one-column layout compared to the two-column layout, despite the screen being smaller.
Authors might want to show different image content depending on the rendered size of the image. This is usually referred to as art direction.
When a Web page is viewed on a screen with a large physical size (assuming a maximised browser window), the author might wish to include some less relevant parts surrounding the critical part of the image. When the same Web page is viewed on a screen with a small physical size, the author might wish to show only the critical part of the image.
Authors might want to show the same image content but using different image formats, depending on which image formats the user agent supports. This is usually referred to as image format-based selection.
A Web page might have some images in the JPEG, WebP and JPEG XR image formats, with the latter two having better compression abilities compared to JPEG. Since different user agents can support different image formats, with some formats offering better compression ratios, the author would like to serve the better formats to user agents that support them, while providing JPEG fallback for user agents that don't.
The above situations are not mutually exclusive. For example, it is reasonable to combine different resources for different device-pixel-ratio with different resources for art direction.
While it is possible to solve these problems using scripting, doing so introduces some other problems:
Some user agents aggressively download images specified in the HTML markup, before scripts have had a chance to run, so that Web pages complete loading sooner. If a script changes which image to download, the user agent will potentially start two separate downloads, which can instead cause worse page loading performance.
If the author avoids specifying any image in the HTML markup and instead instantiates a single download from script, that avoids the double download problem above but then no image will be downloaded at all for users with scripting disabled and the aggressive image downloading optimisation will also be disabled.
With this in mind, this specification introduces a number of features to address the above problems in a declarative manner.
The src
and srcset
attributes on the img
element can be used,
using the x
descriptor,
to provide multiple images that only vary in their size
(the smaller image is a scaled-down version of the bigger image).
The x
descriptor is not appropriate when the
rendered size of the image depends on the viewport width (viewport-based selection),
but can be used together with art direction.
<h2>From today's featured article</h2> <img src="/uploads/100-marie-lloyd.jpg" srcset="/uploads/150-marie-lloyd.jpg 1.5x, /uploads/200-marie-lloyd.jpg 2x" alt="" width="100" height="150"> <p><b><a href="/wiki/Marie_Lloyd">Marie Lloyd</a></b> (1870–1922) was an English <a href="/wiki/Music_hall">music hall</a> singer, ...
The user agent can choose any of the given resources depending on the user's screen's pixel density, zoom level, and possibly other factors such as the user's network conditions.
For backwards compatibility with older user agents that
don't yet understand the srcset
attribute,
one of the URLs is specified in the img
element's src
attribute.
This will result in something useful (though perhaps lower-resolution than the user would like)
being displayed even in older user agents.
For new user agents, the src
attribute participates in the resource selection,
as if it was specified in srcset
with a 1x
descriptor.
The image's rendered size is given in the
width
and height
attributes,
which allows the user agent to allocate space for the image before it is downloaded.
The srcset
and sizes
attributes can be used,
using the w
descriptor,
to provide multiple images that only vary in their size
(the smaller image is a scaled-down version of the bigger image).
In this example, a banner image takes up the entire viewport width (using appropriate CSS).
<h1><img sizes="100vw" srcset="wolf-400.jpg 400w, wolf-800.jpg 800w, wolf-1600.jpg 1600w" src="wolf-400.jpg" alt="The rad wolf"></h1>
The user agent will calculate the effective pixel density of each image
from the specified w
descriptors and the specified rendered size in the sizes
attribute.
It can then choose any of the given resources depending on
the user's screen's pixel density, zoom level, and possibly other factors such as the user's network conditions.
If the user's screen is 320 CSS pixels wide, this is equivalent to specifying
wolf-400.jpg 1.25x, wolf-800.jpg 2.5x, wolf-1600.jpg 5x
.
On the other hand, if the user's screen is 1200 CSS pixels wide,
this is equivalent to specifying
wolf-400.jpg 0.33x, wolf-800.jpg 0.67x, wolf-1600.jpg 1.33x
.
By using the w
descriptors and the sizes
attribute,
the user agent can choose the correct image source to download regardless of how large the user's device is.
For backwards compatibility,
one of the URLs is specified in the img
element's src
attribute.
In new user agents, the src
attribute is ignored
when the srcset
attribute uses w
descriptors.
In this example, the Web page has three layouts depending on the width of the viewport.
The narrow layout has one column of images (the width of each image is about 100%),
the middle layout has two columns of images (the width of each image is about 50%),
and the widest layout has three columns of images, and some page margin (the width of each image is about 33%).
It breaks between these layouts when the viewport is 30em
wide and 50em
wide, respectively.
<img sizes="(max-width: 30em) 100vw, (max-width: 50em) 50vw, calc(33vw - 100px)" srcset="swing-200.jpg 200w, swing-400.jpg 400w, swing-800.jpg 800w, swing-1600.jpg 1600w" src="swing-400.jpg" alt="Kettlebell Swing">
The sizes
attribute sets up the
layout breakpoints at 30em
and 50em
,
and declares the image sizes between these breakpoints to be
100vw
, 50vw
, or calc(33vw - 100px)
.
These sizes do not necessarily have to match up exactly with the actual image width as specified in the CSS.
The user agent will pick a width from the sizes
attribute,
using the first item with a <media-condition> (the part in parentheses) that evaluates to true,
or using the last item (calc(33vw - 100px)
) if they all evaluate to false.
For example, if the viewport width is 29em
,
then (max-width: 30em)
evaluates to true and 100vw
is used,
so the image size, for the purpose of resource selection, is 29em
.
If the viewport width is instead 32em
,
then (max-width: 30em)
evaluates to false,
but (max-width: 50em)
evaluates to true and 50vw
is used,
so the image size, for the purpose of resource selection, is 16em
(half the viewport width).
Notice that the slightly wider viewport results in a smaller image because of the different layout.
The user agent can then calculate the effective pixel density and choose an appropriate resource similarly to the previous example.
The picture
element and the source
element,
together with the media
attribute,
can be used, to provide multiple images that vary the image content
(for instance the smaller image might be a cropped version of the bigger image).
<picture> <source media="(min-width: 45em)" srcset="large.jpg"> <source media="(min-width: 32em)" srcset="med.jpg"> <img src="small.jpg" alt="The president giving an award."> </picture>
The user agent will choose the first source
element
for which the media query in the media
attribute matches,
and then choose an appropriate URL from its srcset
attribute.
The rendered size of the image varies depending on which resource is chosen. To specify dimensions that the user agent can use before having downloaded the image, CSS can be used.
img { width: 300px; height: 300px } @media (min-width: 32em) { img { width: 500px; height:300px } } @media (min-width: 45em) { img { width: 700px; height:400px } }
This example combines art direction- and device-pixel-ratio-based selection. A banner that takes half the viewport is provided in two versions, one for wide screens and one for narrow screens.
<h1> <picture> <source media="(max-width: 500px)" srcset="banner-phone.jpeg, banner-phone-HD.jpeg 2x"> <img src="banner.jpeg" srcset="banner-HD.jpeg 2x" alt="The Breakfast Combo"> </picture> </h1>
The type
attribute
on the source
element can be used,
to provide multiple images in different formats.
<h2>From today's featured article</h2> <picture> <source srcset="/uploads/100-marie-lloyd.webp" type="image/webp"> <source srcset="/uploads/100-marie-lloyd.jxr" type="image/vnd.ms-photo"> <img src="/uploads/100-marie-lloyd.jpg" alt="" width="100" height="150"> </picture> <p><b><a href="/wiki/Marie_Lloyd">Marie Lloyd</a></b> (1870–1922) was an English <a href="/wiki/Music_hall">music hall</a> singer, ...
In this example, the user agent will choose the first source that has
a type
attribute with a supported MIME type.
If the user agent supports WebP images,
the first source
element will be chosen.
If not, but the user agent does support JPEG XR images,
the second source
element will be chosen.
If neither of those formats are supported,
the img
element will be chosen.
This section is non-normative.
CSS and media queries can be used to construct graphical page layouts that adapt dynamically to
the user's environment, in particular to different viewport dimensions and pixel densities. For
content, however, CSS does not help; instead, we have the img
element's srcset
attribute and the picture
element.
This section walks through a sample case showing how to use these features.
Consider a situation where on wide screens (wider than 600 CSS pixels) a 300×150 image
named a-rectangle.png
is to be used, but on smaller screens (600 CSS pixels
and less), a smaller 100×100 image called a-square.png
is to be used.
The markup for this would look like this:
<figure> <picture> <source srcset="a-square.png" media="(max-width: 600px)"> <img src="a-rectangle.png" alt="Barney Frank wears a suit and glasses."> </picture> <figcaption>Barney Frank, 2011</figcaption> </figure>
For details on what to put in the alt
attribute,
see the Requirements for providing text to act as an alternative for images section.
The problem with this is that the user agent does not necessarily know what dimensions to use for the image when the image is loading. To avoid the layout having to be reflowed multiple times as the page is loading, CSS and CSS media queries can be used to provide the dimensions:
<figure> <style scoped> #a { width: 300px; height: 150px; } @media (max-width: 600px) { #a { width: 100px; height: 100px; } } </style> <picture> <source srcset="a-square.png" media="(max-width: 600px)"> <img src="a-rectangle.png" alt="Barney Frank wears a suit and glasses." id="a"> </picture> <figcaption>Barney Frank, 2011</figcaption> </figure>
Alternatively, the width
and height
attributes can be used to provide the width for legacy user
agents, using CSS just for the user agents that support picture
:
<figure> <style scoped media="(max-width: 600px)"> #a { width: 100px; height: 100px; } </style> <picture> <source srcset="a-square.png" media="(max-width: 600px)"> <img src="a-rectangle.png" width="300" height="150" alt="Barney Frank wears a suit and glasses." id="a"> </picture> <figcaption>Barney Frank, 2011</figcaption> </figure>
The img
element is used with the src
attribute, which gives the URL of the image to use for legacy user
agents that do not support the picture
element. This leads
to a question of which image to provide in the src
attribute.
If the author wants the biggest image in legacy user agents, the markup could be as follows:
<picture> <source srcset="pear-mobile.jpeg" media="(max-width: 720px)"> <source srcset="pear-tablet.jpeg" media="(max-width: 1280px)"> <img src="pear-desktop.jpeg" alt="The pear is juicy."> </picture>
However, if legacy mobile user agents are more important, one can list all three images in the
source
elements, overriding the src
attribute entirely.
<picture> <source srcset="pear-mobile.jpeg" media="(max-width: 720px)"> <source srcset="pear-tablet.jpeg" media="(max-width: 1280px)"> <source srcset="pear-desktop.jpeg"> <img src="pear-mobile.jpeg" alt="The pear is juicy."> </picture>
Since at this point the src
attribute is actually being
ignored entirely by picture
-supporting user agents, the src
attribute can default to any image, including one that is neither
the smallest nor biggest:
<picture> <source srcset="pear-mobile.jpeg" media="(max-width: 720px)"> <source srcset="pear-tablet.jpeg" media="(max-width: 1280px)"> <source srcset="pear-desktop.jpeg"> <img src="pear-tablet.jpeg" alt="The pear is juicy."> </picture>
Above the max-width
media feature is used, giving the maximum
(viewport) dimensions that an image is intended for.
It is also possible to use min-width
instead.
<picture> <source srcset="pear-desktop.jpeg" media="(min-width: 1281px)"> <source srcset="pear-tablet.jpeg" media="(min-width: 721px)"> <img src="pear-mobile.jpeg" alt="The pear is juicy."> </picture>
picture
elementsource
elements, followed by one img
element, optionally intermixed with script-supporting elements.interface HTMLPictureElement : HTMLElement {};
The picture
element is a container
which provides multiple sources to its contained img
element
to allow authors to declaratively control or give hints to the user agent about which image resource to use,
based on the screen pixel density, viewport size, image format, and other factors. It represents its children.
The picture
element is somewhat different
from the similar-looking video
and audio
elements.
While all of them contain source
elements,
the source
element's src
attribute has no meaning
when the element is nested within a picture
element,
and the resource selection algorithm is different.
As well, the picture
element itself does not display anything;
it merely provides a context for its contained img
element
that enables it to choose from multiple URLs.
source
element when used with the picture
elementsource
element.picture
element, before the img
element.source
element.srcset
sizes
media
type
partial interface HTMLSourceElement { attribute DOMString srcset; attribute DOMString sizes; attribute DOMString media; };
The authoring requirements in this section only apply if the source
element has
a parent that is a picture
element.
The source
element allows authors to specify multiple alternative
source sets for img
elements.
It does not represent anything on its own.
The srcset
attribute must be present,
and must consist of one or more image candidate strings,
each separated from the next by a U+002C COMMA character (,).
If an image candidate string contains no descriptors
and no space characters after the URL,
the following image candidate string, if there is one,
must begin with one or more space characters.
If the srcset
attribute has any
image candidate strings using a width descriptor,
the sizes
attribute must also be present,
and the value must be a valid source size list.
The media
attributes may also be present.
If present, the value must contain a valid media query list.
The type
attribute may also be present.
If present, the value must be a valid MIME type.
It gives the type of the images in the source set,
to allow the user agent to skip to the next source
element
if it does not support the given type.
If the type
attribute
is not specified, the user agent will not select a different
source
element if it finds that it does not support
the image format after fetching it.
When a source
element has a following sibling
source
element or img
element with a
srcset
attribute specified, it must have
at least one of the following:
A media
attribute specified with a value that,
after stripping leading and trailing whitespace,
is not the empty string and is not an ASCII case-insensitive match for the string "all
".
A type
attribute specified.
The src
attribute must not be present.
The IDL attributes srcset
,
sizes
and
media
must reflect the
respective content attributes of the same name.
img
elementusemap
attribute: Interactive content.alt
— Replacement text for use when images are not availablesrc
— Address of the resourcesrcset
— Images to use in different situations (e.g. high-resolution displays, small monitors, etc)sizes
crossorigin
— How the element handles crossorigin requestsusemap
— Name of image map to useismap
— Whether the image is a server-side image mapwidth
— Horizontal dimensionheight
— Vertical dimension[NamedConstructor=Image(optional unsigned long width, optional unsigned long height)] interface HTMLImageElement : HTMLElement { attribute DOMString alt; attribute DOMString src; attribute DOMString srcset; attribute DOMString sizes; attribute DOMString? crossOrigin; attribute DOMString useMap; attribute boolean isMap; attribute unsigned long width; attribute unsigned long height; readonly attribute unsigned long naturalWidth; readonly attribute unsigned long naturalHeight; readonly attribute boolean complete; readonly attribute DOMString currentSrc; };
An img
element represents an image.
The image given by the src
and srcset
attributes,
and any previous sibling source
elements'
srcset
attributes if the parent is a picture
element,
is the embedded content; the value of
the alt
attribute provides equivalent content for
those who cannot process images or who have image loading disabled (i.e. it is the
img
element's fallback content).
The requirements on the alt
attribute's value are described
in the next section.
The src
attribute must be present, and must contain a
valid non-empty URL potentially surrounded by spaces referencing a non-interactive,
optionally animated, image resource that is neither paged nor scripted.
The srcset
attribute may also be present.
If present, its value must consist of one or more
image candidate strings,
each separated from the next by a U+002C COMMA character (,).
If an image candidate string contains no descriptors
and no space characters after the URL,
the following image candidate string, if there is one,
must begin with one or more space characters.
An image candidate string consists of the following components, in order, with the further restrictions described below this list:
Zero or more space characters.
A valid non-empty URL that does not start or end with a U+002C COMMA character (,), referencing a non-interactive, optionally animated, image resource that is neither paged nor scripted.
Zero or more space characters.
Zero or one of the following:
A width descriptor, consisting of: a space character, a valid non-negative integer giving a number greater than zero representing the width descriptor value, and a U+0077 LATIN SMALL LETTER W character.
A pixel density descriptor, consisting of: a space character, a valid floating-point number giving a number greater than zero representing the pixel density descriptor value, and a U+0078 LATIN SMALL LETTER X character.
Zero or more space characters.
There must not be an image candidate string for an element that has the same width descriptor value as another image candidate string's width descriptor value for the same element.
There must not be an image candidate string for an element that
has the same pixel density descriptor value as another
image candidate string's pixel density descriptor value for the same element.
For the purpose of this requirement,
an image candidate string with no descriptors is equivalent to
an image candidate string with a 1x
descriptor.
If a source
element has a sizes
attribute present
or an img
element has a sizes
attribute present,
all image candidate strings for that
element must have the width descriptor specified.
If an image candidate string for an source
or img
element
has the width descriptor specified,
all other image candidate strings for that element
must also have the width descriptor specified.
The specified width in an image candidate string's width descriptor must match the intrinsic width in the resource given by the image candidate string's URL, if it has an intrinsic width.
The requirements above imply that images can be static bitmaps (e.g. PNGs, GIFs, JPEGs), single-page vector documents (single-page PDFs, XML files with an SVG root element), animated bitmaps (APNGs, animated GIFs), animated vector graphics (XML files with an SVG root element that use declarative SMIL animation), and so forth. However, these definitions preclude SVG files with script, multipage PDF files, interactive MNG files, HTML documents, plain text documents, and so forth. [PNG] [GIF] [JPEG] [PDF] [XML] [APNG] [SVG] [MNG]
If the srcset
attribute is present and has any
image candidate strings using a width descriptor,
the sizes
attribute must also be present,
and the value must be a valid source size list.
A valid source size list is a string that matches the following grammar: [CSSVALUES] [MQ]
<source-size-list> = [ <source-size># , ]? <source-size-value> <source-size> = <media-condition> <source-size-value> <source-size-value> = <length>
A <source-size-value> must not be negative.
Percentages are not allowed in a <source-size-value>,
to avoid confusion about what it would be relative to.
The vw
unit can be used for sizes relative to the viewport width.
The img
element must not be used as a layout tool. In particular, img
elements should not be used to display transparent images, as such images rarely convey meaning and
rarely add anything useful to the document.
The crossorigin
attribute is a CORS
settings attribute. Its purpose is to allow images from third-party sites that allow
cross-origin access to be used with canvas
.
An img
element has a current request and a pending request.
The current request is initially set to a new image request.
The pending request is initially set to null.
The current request is usually referred to as the img
element itself.
An image request has a state, current URL and image data.
An image request's state is one of the following:
An image request's current URL is initially the empty string.
An image request's image data is the decoded image data.
When an image request is either in the partially available state or in the completely available state, it is said to be available.
An image request is initially unavailable.
When an img
element is available,
it provides a paint source
whose width is the image's density-corrected intrinsic width (if any),
whose height is the image's density-corrected intrinsic height (if any),
and whose appearance is the intrinsic appearance of the image.
In a browsing context where scripting is disabled, user agents may obtain images immediately or on demand. In a browsing context where scripting is enabled, user agents must obtain images immediately.
A user agent that obtains images immediately must synchronously
update the image data of an img
element,
with the restart animation flag set if so stated,
whenever that element is created or has experienced relevant mutations.
A user agent that obtains images on demand must update the image data of an
img
element whenever it needs the image data (i.e. on demand),
but only if the img
element is in the
unavailable state. When an img
element
has experienced relevant mutations, if the user
agent only obtains images on demand, the img
element must return to the unavailable state.
The relevant mutations for an img
element are as follows:
The element's src
,
srcset
or sizes
attributes are set, changed, or removed.
The element's src
attribute is set to the same value as the previous value.
This must set the restart animation flag for the update the image data algorithm.
The element's crossorigin
attribute's state is changed.
The element is inserted into or
removed from a picture
parent element.
The element's parent is a picture
element and a
source
element is inserted as a previous sibling.
The element's parent is a picture
element and a
source
element that was a previous sibling is removed.
The element's parent is a picture
element and a
source
element that is a previous sibling has its
srcset
,
sizes
,
media
or type
attributes set, changed, or removed.
The element's adopting steps are run.
Each img
element has a last selected source, which must initially be
null.
Each image request has a current pixel density, which must initially be undefined.
When an img
element has a current pixel density that is not 1.0, the
element's image data must be treated as if its resolution, in device pixels per CSS pixels, was
the current pixel density.
The image's density-corrected intrinsic width and height are the intrinsic width and height
after taking into account the current pixel density.
For example, if the current pixel density is 3.125, that means that there are 300 device pixels per CSS inch, and thus if the image data is 300x600, it has an intrinsic dimension of 96 CSS pixels by 192 CSS pixels.
Each Document
object must have a list of available images. Each image
in this list is identified by a tuple consisting of an absolute URL, a CORS
settings attribute mode, and, if the mode is not No
CORS, an origin.
Each image furthermore has an ignore higher-layer caching flag.
User agents may copy entries from one Document
object's list of available images to another at any time (e.g. when the
Document
is created, user agents can add to it all the images that are loaded in
other Document
s), but must not change the keys of entries copied in this way when
doing so, and must unset the ignore higher-layer caching flag for the copied entry.
User agents may also remove images from such lists at any time (e.g. to save
memory).
User agents must remove entries in the list of available images as appropriate
given higher-layer caching semantics for the resource (e.g. the HTTP Cache-Control
response header) when the ignore higher-layer caching is unset.
The list of available images is intended to enable synchronous switching
when changing the src
attribute to a URL that has previously been loaded,
and to avoid re-downloading images in the same document even when they don't allow caching per HTTP.
It is not used to avoid re-downloading the same image while the previous image is still loading,
but the fetch algorithm allows the download to be reused in that case.
The user agent can also store the image data separately from the list of available images.
For example, if a resource has the HTTP response header Cache-Control: must-revalidate
,
the user agent would remove it from the list of available images but could keep the image data separately,
and use that if the server responds with a 304 Not Modified
status.
When the user agent is to update the image data of an img
element,
optionally with the restart animations flag set,
it must run the following steps:
If the element's node document is not the active document, then run these substeps:
Continue running this algorithm in parallel.
Wait until the element's node document is the active document.
If another instance of this algorithm for this img
element was started after this instance
(even if it aborted and is no longer running), then abort these steps.
Queue a microtask to continue this algorithm.
If the user agent cannot support images, or its support for images has been disabled, then abort the image request for the current request and the pending request, set current request to the unavailable state, let pending request be null, and abort these steps.
If the element does not have a srcset
attribute specified and
it does not have a parent or it has a parent but it is not a picture
element,
and it has a src
attribute specified and
its value is not the empty string, let selected source be the value of the
element's src
attribute, and selected pixel
density be 1.0. Otherwise, let selected source be null and selected pixel density be undefined.
Let the img
element's last selected source be selected source.
If selected source is not null, run these substeps:
Resolve selected source, relative to the element, and let the result be absolute URL. If that is not successful, then abort these inner set of steps.
Let key be a tuple consisting of the resulting absolute
URL, the img
element's crossorigin
attribute's mode, and, if that mode is not No CORS,
the node document's origin.
If the list of available images contains an entry for key, then
set the ignore higher-layer caching flag for that entry,
abort the image request for the current request and the pending request,
let pending request be null,
let current request be a new image request whose image data is that of the entry
and whose state is set to the completely available state,
update the presentation of the image appropriately,
let the current request's current pixel density be selected pixel density,
queue a task to restart the animation if restart animation is set,
change current request's current URL to absolute URL,
and then fire a simple event named load
at the img
element,
and abort these steps.
Await a stable state, allowing the task that invoked this algorithm to continue. The synchronous section consists of all the remaining steps of this algorithm until the algorithm says the synchronous section has ended. (Steps in synchronous sections are marked with ⌛.)
⌛ If another instance of this algorithm for this img
element was started
after this instance (even if it aborted and is no longer running), then abort these steps.
Only the last instance takes effect, to avoid multiple requests when, for
example, the src
, srcset
,
and crossorigin
attributes are all set in
succession.
⌛ Let selected source and selected pixel density be the URL and pixel density that results from selecting an image source, respectively.
⌛ If selected source is null, run these substeps:
⌛ Set the current request to the broken state, abort the image request for the current request and the pending request, and let pending request be null.
⌛ Queue a task to change the current request's current URL to the empty string,
and then, if the element has a src
attribute
or a srcset
attribute
or a parent that is a picture
element,
fire a simple event named error
at the img
element.
⌛ Abort this algorithm.
⌛ Queue a task to fire a progress event named loadstart
at
the img
element.
⌛ Resolve selected source, relative
to the element, and let the result be absolute URL. If that is not successful, then
abort the image request for the current request and the pending request,
set the current request to the broken state,
let pending request be null,
queue a task to
change the current request's current URL to absolute URL,
fire a simple event named error
at the img
element
and then fire a simple event named loadend
at the img
element,
and abort these steps.
⌛ If the pending request is not null, and absolute URL is the same as the pending request's current URL, then abort these steps.
⌛ If absolute URL is the same as the current request's current URL, and current request is in the partially available state, then abort the image request for the pending request, queue a task to restart the animation if restart animation is set, and abort these steps.
⌛ If the pending request is not null, abort the image request for the pending request.
⌛ Let image request be a new image request whose current URL is absolute URL.
⌛ If current request is in the unavailable state or the broken state, let the current request be image request. Otherwise, let the pending request be image request.
⌛ Do a potentially CORS-enabled fetch of absolute URL,
with the mode being the current state of
the element's crossorigin
content attribute,
the origin being the origin of the img
element's
node document, and the default origin behaviour set to taint.
Let this instance of the fetching algorithm be associated with image request.
If the element has a srcset
attribute
or a parent that is a picture
element,
the fetching request's context must be set to imageset.
Otherwise it must be set to image. [FETCH]
This specification does not yet use the "fetch" algorithm from the WHATWG Fetch specification. It will be updated to do so in due course.
The resource obtained in this fashion, if any, is image request's image data.
It can be either CORS-same-origin or CORS-cross-origin; this affects
the origin of the image itself (e.g. when used on a canvas
).
Fetching the image must delay the load event of the element's node document until the task that is queued by the networking task source once the resource has been fetched (defined below) has been run.
This, unfortunately, can be used to perform a rudimentary port scan of the user's local network (especially in conjunction with scripting, though scripting isn't actually necessary to carry out such an attack). User agents may implement cross-origin access control policies that are stricter than those described above to mitigate this attack, but unfortunately such policies are typically not compatible with existing Web content.
If the resource is CORS-same-origin, each task
that is queued by the networking task source
while the image is being fetched,
if image request is the current request,
must fire a progress event named progress
at the img
element.
End the synchronous section, continuing the remaining steps in parallel, but without missing any data from the fetch algorithm.
As soon as possible, jump to the first applicable entry from the following list:
multipart/x-mixed-replace
The next task that is queued by the networking task source while the image is being fetched must run the following steps:
If image request is the pending request and at least one body part has been completely decoded, abort the image request for the current request, upgrade the pending request to the current request.
Otherwise, if image request is the pending request and the user agent is able to determine that image request's image is corrupted in some fatal way such that the image dimensions cannot be obtained, abort the image request for the current request, upgrade the pending request to the current request and set the current request's state to broken.
Otherwise, if image request is the current request, it is in the unavailable state, and the user agent is able to determine image request's image's width and height, set the current request's state to partially available.
Otherwise, if image request is the current request, it is in the unavailable state, and the user agent is able to determine that image request's image is corrupted in some fatal way such that the image dimensions cannot be obtained, set the current request's state to broken.
Each task that is queued by the networking task source while the image is being fetched must update the presentation of the image, but as each new body
part comes in, it must replace the previous image. Once one body part has been completely
decoded, the user agent must set the img
element to the completely available state and queue a task to fire
a simple event named load
at the img
element.
The progress
and loadend
events are not fired for
multipart/x-mixed-replace
image streams.
The next task that is queued by the networking task source while the image is being fetched must run the following steps:
If the user agent is able to determine image request's image's width and height, and image request is pending request, set image request's state to partially available.
Otherwise, if the user agent is able to determine image request's image's width and height,
and image request is current request,
update the img
element's presentation appropriately
and set image request's state to partially available.
Otherwise, if the user agent is able to determine that image request's image
is corrupted in some fatal way such that the image dimensions cannot be obtained,
and image request is pending request,
abort the image request for the current request and the pending request,
upgrade the pending request to the current request,
set current request to the broken state,
fire a simple event named error
at the img
element,
fire a simple event named loadend
at the img
element,
and abort these steps.
Otherwise, if the user agent is able to determine that image request's image
is corrupted in some fatal way such that the image dimensions cannot be obtained,
and image request is current request,
abort the image request for image request,
fire a simple event named error
at the img
element,
fire a simple event named loadend
at the img
element,
and abort these steps.
That task, and each subsequent task, that is queued by the networking task source while the image is being fetched, if image request is the current request, must update the presentation of the image appropriately (e.g. if the image is a progressive JPEG, each packet can improve the resolution of the image).
Furthermore, the last task that is queued by the networking task source once the resource has been fetched must additionally run these steps:
If image request is the pending request,
abort the image request for the current request,
upgrade the pending request to the current request and
update the img
element's presentation appropriately.
Set image request to the completely available state.
Add the image to the list of available images using the key key, with the ignore higher-layer caching flag set.
Fire a progress event or simple event named load
at the img
element, depending on the resource in image request.
Fire a progress event or simple event named loadend
at the img
element, depending on the resource in image request.
The image data is not in a supported file format; the user agent must set
image request to the broken state,
abort the image request for the current request and the pending request,
upgrade the pending request to the current request if image request is the pending request,
and then queue a task to first fire a simple event named error
at the img
element and then fire a simple
event named loadend
at the img
element.
To abort the image request for an image request image request means to run the following steps:
Forget image request's image data, if any.
Abort any instance of the fetching algorithm for image request, discarding any pending tasks generated by that algorithm.
To upgrade the pending request to the current request for an img
element means to run the following steps:
Let the img
element's current request be the pending request.
Let the img
element's pending request be null.
To fire a progress event or simple event named type at an element e, depending on resource r, means to fire a progress event named type at e if r is CORS-same-origin, and otherwise fire a simple event named type at e.
While a user agent is running the above algorithm for an element x, there
must be a strong reference from the element's node document to the element x,
even if that element is not in its Document
.
When an img
element is in the completely available
state and the user agent can decode the media data without errors, then the
img
element is said to be fully decodable.
Whether the image is fetched successfully or not (e.g. whether the response code was a 2xx code or equivalent) must be ignored when determining the image's type and whether it is a valid image.
This allows servers to return images with error responses, and have them displayed.
The user agent should apply the image sniffing rules to determine the type of the image, with the image's associated Content-Type headers giving the official type. If these rules are not applied, then the type of the image must be the type given by the image's associated Content-Type headers.
User agents must not support non-image resources with the img
element (e.g. XML
files whose root element is an HTML element). User agents must not run executable code (e.g.
scripts) embedded in the image resource. User agents must only display the first page of a
multipage resource (e.g. a PDF file). User agents must not allow the resource to act in an
interactive fashion, but should honour any animation in the resource.
This specification does not specify which image types are to be supported.
An img
element is associated with a source set.
A source set is an ordered set of zero or more image sources and a source size.
An image source is a URL, and optionally either a density descriptor, or a width descriptor.
A source size is a <source-size-value>.
When a source size has a unit relative to the viewport,
it must be interpreted relative to the img
element's node document's viewport.
Other units must be interpreted the same as in Media Queries. [MQ]
A source size must not use CSS functions other than the calc()
function.
When asked to select an image source for a given img
element el,
user agents must do the following:
Update the source set for el.
If el's source set is empty, return null as the URL and undefined as the pixel density and abort these steps.
Otherwise, take el's source set and let it be source set.
If an entry b in source set has the same associated density descriptor as an earlier entry a in source set, then remove entry b. Repeat this step until none of the entries in source set have the same associated density descriptor as an earlier entry.
In a user agent-specific manner, choose one image source from source set. Let this be selected source.
Return selected source and its associated pixel density.
When asked to update the source set for a given img
element el,
user agents must do the following:
Set el's source set to an empty source set.
If el has a parent node and that is a picture
element,
let elements be an array containing el's parent node's child elements, retaining relative order.
Otherwise, let elements be array containing only el.
Iterate through elements, doing the following for each item child:
If child is el:
If child has a srcset
attribute,
parse child's srcset attribute
and let the returned source set be source set.
Otherwise, let source set be an empty source set.
Parse child's sizes attribute and let source set's source size be the returned value.
If child has a src
attribute
whose value is not the empty string
and source set does not contain an
image source with a density descriptor value of 1,
and no image source with a width descriptor,
append child's src
attribute value to source set.
Normalise the source densities of source set.
Let el's source set be source set.
Abort this algorithm.
If child is not a source
element,
continue to the next child.
Otherwise, child is a source
element.
If child does not have a srcset
attribute,
continue to the next child.
Parse child's srcset attribute and let the returned source set be source set.
If source set has zero image sources, continue to the next child.
If child has a media
attribute,
and its value does not match the environment,
continue to the next child.
Parse child's sizes attribute and let source set's source size be the returned value.
If child has a type
attribute,
and its value is an unknown or unsupported MIME type,
continue to the next child.
Normalise the source densities of source set.
Let el's source set be source set.
Abort this algorithm.
Each img
element independently considers
its previous sibling source
elements
plus the img
element itself
for selecting an image source, ignoring any other (invalid) elements,
including other img
elements in the same picture
element,
or source
elements that are following siblings
of the relevant img
element.
When asked to parse a srcset attribute from an element,
parse the value of the element's srcset
attribute as follows:
Let input be the value passed to this algorithm.
Let position be a pointer into input, initially pointing at the start of the string.
Let candidates be an initially empty source set.
Splitting loop: Collect a sequence of characters that are space characters or U+002C COMMA characters. If any U+002C COMMA characters were collected, that is a parse error.
If position is past the end of input, return candidates and abort these steps.
Collect a sequence of characters that are not space characters, and let that be url.
Let descriptors be a new empty list.
If url ends with a U+002C COMMA character (,), follow these substeps:
Remove all trailing U+002C COMMA characters from url. If this removed more than one character, that is a parse error.
Otherwise, follow these substeps:
Descriptor tokeniser: Skip whitespace
Let current descriptor be the empty string.
Let state be in descriptor.
Let c be the character at position. Do the following depending on the value of state. For the purpose of this step, "EOF" is a special character representing that position is past the end of input.
Do the following, depending on the value of c:
If current descriptor is not empty, append current descriptor to descriptors and let current descriptor be the empty string. Set state to after descriptor.
Advance position to the next character in input. If current descriptor is not empty, append current descriptor to descriptors. Jump to the step labeled descriptor parser.
Append c to current descriptor. Set state to in parens.
If current descriptor is not empty, append current descriptor to descriptors. Jump to the step labeled descriptor parser.
Append c to current descriptor.
Do the following, depending on the value of c:
Append c to current descriptor. Set state to in descriptor.
Append current descriptor to descriptors. Jump to the step labeled descriptor parser.
Append c to current descriptor.
Do the following, depending on the value of c:
Stay in this state.
Jump to the step labeled descriptor parser.
Set state to in descriptor. Set position to the previous character in input.
Advance position to the next character in input. Repeat this substep.
In order to be compatible with future additions, this algorithm supports multiple descriptors and descriptors with parens.
Descriptor parser: Let error be no.
Let width be absent.
Let density be absent.
Let future-compat-h be absent.
For each descriptor in descriptors, run the appropriate set of steps from the following list:
If the user agent does not support the sizes
attribute,
let error be yes.
A conforming user agent will support the sizes
attribute.
However, user agents typically implement and ship features in an incremental manner in practice.
If width and density are not both absent, then let error be yes.
Apply the rules for parsing non-negative integers to the descriptor. If the result is zero, let error be yes. Otherwise, let width be the result.
If width, density and future-compat-h are not all absent, then let error be yes.
Apply the rules for parsing floating-point number values to the descriptor. If the result is less than zero, let error be yes. Otherwise, let density be the result.
If density is zero, the intrinsic dimensions will be infinite. User agents are expected to have limits in how big images can be rendered, which is allowed by the hardware limitations clause.
This is a parse error.
If future-compat-h and density are not both absent, then let error be yes.
Apply the rules for parsing non-negative integers to the descriptor. If the result is zero, let error be yes. Otherwise, let future-compat-h be the result.
Let error be yes.
If future-compat-h is not absent and width is absent, let error be yes.
If error is still no, then append a new image source to candidates whose URL is url, associated with a width width if not absent and a pixel density density if not absent. Otherwise, there is a parse error.
Return to the step labeled splitting loop.
When asked to parse a sizes attribute from an element,
parse a comma-separated list of component values
from the value of the element's sizes
attribute
(or the empty string, if the attribute is absent),
and let unparsed sizes list be the result. [CSSSYNTAX]
For each unparsed size in unparsed sizes list:
Remove all consecutive <whitespace-token>s from the end of unparsed size. If unparsed size is now empty, that is a parse error; continue to the next iteration of this algorithm.
If the last component value in unparsed size
is a valid non-negative <source-size-value>,
let size be its value
and remove the component value from unparsed size.
Any CSS function other than the calc()
function is invalid.
Otherwise, there is a parse error;
continue to the next iteration of this algorithm.
Remove all consecutive <whitespace-token>s from the end of unparsed size. If unparsed size is now empty, return size and exit this algorithm. If this was not the last item in unparsed sizes list, that is a parse error.
Parse the remaining component values in unparsed size as a <media-condition>. If it does not parse correctly, or it does parse correctly but the <media-condition> evaluates to false, continue to the next iteration of this algorithm. [MQ]
Return size and exit this algorithm.
If the above algorithm exhausts unparsed sizes list without returning a size value,
return 100vw
.
A parse error for the algorithms above indicates a non-fatal mismatch between input and requirements. User agents are encouraged to expose parse errors somehow.
While a valid source size list only contains a bare <source-size-value> (without an accompanying <media-condition>) as the last entry in the <source-size-list>, the parsing algorithm technically allows such at any point in the list, and will accept it immediately as the size if the preceding entries in the list weren't used. This is to enable future extensions, and protect against simple author errors such as a final trailing comma.
An image source can have a density descriptor, a width descriptor, or no descriptor at all accompanying its URL. Normalising a source set gives every image source a density descriptor.
When asked to normalise the source densities of a source set source set, the user agent must do the following:
Let source size be source set's source size.
For each image source in source set:
If the image source has a density descriptor, continue to the next image source.
Otherwise, if the image source has a width descriptor,
replace the width descriptor with a density descriptor
with a value of the width descriptor divided by the source size
and a unit of x
.
If the source size is zero, the density would be infinity, which results in the intrinsic dimensions being zero by zero.
Otherwise, give the image source a density descriptor of 1x
.
The user agent may at any time run the following algorithm to update an img
element's image in order to react to changes in the environment. (User agents are not
required to ever run this algorithm; for example, if the user is not looking at the page any
more, the user agent might want to wait until the user has returned to the page before determining
which image to use, in case the environment changes again in the meantime.)
User agents are encouraged to run this algorithm in particular when the user changes the viewport's size
(e.g. by resizing the window or changing the page zoom),
and when an img
element is inserted into a document,
so that the density-corrected intrinsic width and height match the new viewport,
and so that the correct image is chosen when art direction is involved.
Await a stable state. The synchronous section consists of all the remaining steps of this algorithm until the algorithm says the synchronous section has ended. (Steps in synchronous sections are marked with ⌛.)
⌛ If the img
element does not have a
srcset
attribute specified and
it either has no parent or it is not a picture
element,
it is not in a Document
,
has image data whose resource type is multipart/x-mixed-replace
,
or the pending request is not null,
then abort this algorithm.
⌛ Let selected source and selected pixel density be the URL and pixel density that results from selecting an image source, respectively.
⌛ If selected source is null, then abort these steps.
⌛ If selected source and selected pixel density are the same as the element's last selected source and current pixel density, then abort these steps.
⌛ Resolve selected source, relative to the element, and let the result be absolute URL. If that is not successful, abort these steps.
⌛ Let CORS mode be the state of the element's crossorigin
content attribute.
⌛ Let origin be the origin of the img
element's node document.
⌛ Let key be a tuple consisting of absolute URL, CORS mode, and, if CORS mode is not No CORS, origin.
⌛ Let image request be a new image request whose current URL is absolute URL
⌛ Let the element's pending request be image request.
End the synchronous section, continuing the remaining steps in parallel.
If the list of available images contains an entry for key, then set image request's image data to that of the entry. Continue to the next step.
Otherwise, do a potentially CORS-enabled fetch of absolute URL, with the mode being CORS mode, the origin being origin, and the default origin behaviour set to taint.
If this download fails in any way (other than the response code not being a 2xx code, as
mentioned earlier), or if the image format is unsupported (as determined by applying the image sniffing rules, again as mentioned earlier),
or if the user agent is able to determine that image request's image is corrupted in some fatal way such that the image dimensions cannot be obtained,
or if the resource type is multipart/x-mixed-replace
, then
let pending request be null and abort these steps.
Otherwise, wait for the fetch algorithm to queue its last task, and then
continue with these steps.
The resource obtained in this fashion, if any, is image request's image data.
It can be either CORS-same-origin or CORS-cross-origin;
this affects the origin of the image itself (e.g. when used on a canvas
).
Queue a task to run the following substeps:
If the img
element has experienced relevant mutations
since this algorithm started, then let pending request be null and abort these steps.
Let the img
element's last selected source be selected source
and the img
element's current pixel density be selected pixel density.
Set image request to the completely available state.
Add the image to the list of available images using the key key, with the ignore higher-layer caching flag set.
Update the img
element's presentation appropriately.
Fire a simple event named load
at the
img
element.
The task source for the tasks queued by algorithms in this section is the DOM manipulation task source.
What an img
element represents depends on the src
attribute and the alt
attribute.
src
attribute is set and the alt
attribute is set to the empty stringThe image is either decorative or supplemental to the rest of the content, redundant with some other information in the document.
If the image is available and the user agent is configured to display that image, then the element represents the element's image data.
Otherwise, the element represents nothing, and may be omitted completely from the rendering. User agents may provide the user with a notification that an image is present but has been omitted from the rendering.
src
attribute is set and the alt
attribute is set to a value that isn't emptyThe image is a key part of the content; the alt
attribute
gives a textual equivalent or replacement for the image.
If the image is available and the user agent is configured to display that image, then the element represents the element's image data.
Otherwise, the element represents the text given by the alt
attribute. User agents may provide the user with a notification
that an image is present but has been omitted from the rendering.
src
attribute is set and the alt
attribute is notThe image might be a key part of the content, and there is no textual equivalent of the image available.
In a conforming document, the absence of the alt
attribute indicates that the image is a key part of the content
but that a textual replacement for the image was not available when the image was generated.
If the image is available and the user agent is configured to display that image, then the element represents the element's image data.
Otherwise, the user agent should display some sort of indicator that there is an image that is not being rendered, and may, if requested by the user, or if so configured, or when required to provide contextual information in response to navigation, provide caption information for the image, derived as follows:
If the image has a title
attribute whose value is not
the empty string, then the value of that attribute is the caption information; abort these
steps.
If the image is a descendant of a figure
element that has a child
figcaption
element, and, ignoring the figcaption
element and its
descendants, the figure
element has no flow content descendants other
than inter-element whitespace and the img
element, then the contents of the first such
figcaption
element are the caption information; abort these steps.
There is no caption information.
src
attribute is not set and either the alt
attribute is set to the empty string or the alt
attribute is not set at allThe element represents nothing.
The element represents the text given by the alt
attribute.
The alt
attribute does not represent advisory information.
User agents must not present the contents of the alt
attribute
in the same way as content of the title
attribute.
User agents may always provide the user with the option to display any image, or to prevent any image from being displayed. User agents may also apply heuristics to help the user make use of the image when the user is unable to see it, e.g. due to a visual disability or because they are using a text terminal with no graphics capabilities. Such heuristics could include, for instance, optical character recognition (OCR) of text found within the image.
While user agents are encouraged to repair cases of missing alt
attributes, authors must not rely on such behaviour. Requirements for providing text to act as an alternative for images are described
in detail below.
The contents of img
elements, if any, are ignored for the purposes of
rendering.
The usemap
attribute,
if present, can indicate that the image has an associated
image map.
The ismap
attribute, when used on an element that is a descendant of an
a
element with an href
attribute, indicates by its
presence that the element provides access to a server-side image
map. This affects how events are handled on the corresponding
a
element.
The ismap
attribute is a
boolean attribute. The attribute must not be specified
on an element that does not have an ancestor a
element
with an href
attribute.
The usemap
and
ismap
attributes
can result in confusing behaviour when used together with
source
elements with the
media
attribute specified
in a picture
element.
The img
element supports dimension
attributes.
The alt
, src
, srcset
and sizes
IDL attributes must reflect the
respective content attributes of the same name.
The crossOrigin
IDL attribute must
reflect the crossorigin
content attribute.
The useMap
IDL attribute must
reflect the usemap
content attribute.
The isMap
IDL attribute must reflect
the ismap
content attribute.
width
[ = value ]height
[ = value ]These attributes return the actual rendered dimensions of the image, or zero if the dimensions are not known.
They can be set, to change the corresponding content attributes.
naturalWidth
naturalHeight
These attributes return the intrinsic dimensions of the image, or zero if the dimensions are not known.
complete
Returns true if the image has been completely downloaded or if no image is specified; otherwise, returns false.
currentSrc
Returns the image's absolute URL.
Image
( [ width [, height ] ] )Returns a new img
element, with the width
and height
attributes set to the values
passed in the relevant arguments, if applicable.
The IDL attributes width
and height
must return the rendered width and height of the
image, in CSS pixels, if the image is being rendered, and is being rendered to a
visual medium; or else the density-corrected intrinsic width and height of the image, in CSS pixels, if the image has intrinsic dimensions and is
available but not being rendered to a visual medium; or else 0, if
the image is not available or does not have intrinsic dimensions. [CSS]
On setting, they must act as if they reflected the respective content attributes of the same name.
The IDL attributes naturalWidth
and
naturalHeight
must return
the densty-corrected intrinsic width and height
of the image, in CSS pixels, if the image has intrinsic dimensions and is available,
or else 0. [CSS]
The IDL attribute complete
must return true if
any of the following conditions is true:
src
attribute and the srcset
attribute are omitted.
srcset
attribute is omitted and the src
attribute's value is the empty string.
img
element is completely available.
img
element is broken.
Otherwise, the attribute must return false.
The value of complete
can thus change while
a script is executing.
The currentSrc
IDL attribute
must return the img
element's current request's current URL.
A constructor is provided for creating HTMLImageElement
objects (in addition to
the factory methods from DOM such as createElement()
): Image(width, height)
.
When invoked as a constructor, this must return a new HTMLImageElement
object (a new
img
element). If the width argument is present, the new object's
width
content attribute must be set to width. If the height argument is also present, the new object's
height
content attribute must be set to height.
The element's node document must be the active document of the
browsing context of the Window
object on which the interface object of
the invoked constructor is found.
A single image can have different appropriate alternative text depending on the context.
In each of the following cases, the same image is used, yet the alt
text is different each time. The image is the coat of arms of the
Carouge municipality in the canton Geneva in Switzerland.
Here it is used as a supplementary icon:
<p>I lived in <img src="carouge.svg" alt=""> Carouge.</p>
Here it is used as an icon representing the town:
<p>Home town: <img src="carouge.svg" alt="Carouge"></p>
Here it is used as part of a text on the town:
<p>Carouge has a coat of arms.</p> <p><img src="carouge.svg" alt="The coat of arms depicts a lion, sitting in front of a tree."></p> <p>It is used as decoration all over the town.</p>
Here it is used as a way to support a similar text where the description is given as well as, instead of as an alternative to, the image:
<p>Carouge has a coat of arms.</p> <p><img src="carouge.svg" alt=""></p> <p>The coat of arms depicts a lion, sitting in front of a tree. It is used as decoration all over the town.</p>
Here it is used as part of a story:
<p>He picked up the folder and a piece of paper fell out.</p> <p><img src="carouge.svg" alt="Shaped like a shield, the paper had a red background, a green tree, and a yellow lion with its tongue hanging out and whose tail was shaped like an S."></p> <p>He stared at the folder. S! The answer he had been looking for all this time was simply the letter S! How had he not seen that before? It all came together now. The phone call where Hector had referred to a lion's tail, the time Marco had stuck his tongue out...</p>
Here it is not known at the time of publication what the image will be, only that it will be a
coat of arms of some kind, and thus no replacement text can be provided, and instead only a brief
caption for the image is provided, in the title
attribute:
<p>The last user to have uploaded a coat of arms uploaded this one:</p> <p><img src="last-uploaded-coat-of-arms.cgi" title="User-uploaded coat of arms."></p>
Ideally, the author would find a way to provide real replacement text even in this case, e.g. by asking the previous user. Not providing replacement text makes the document more difficult to use for people who are unable to view images, e.g. blind users, or users or very low-bandwidth connections or who pay by the byte, or users who are forced to use a text-only Web browser.
Here are some more examples showing the same picture used in different contexts, with different appropriate alternate texts each time.
<article> <h1>My cats</h1> <h2>Fluffy</h2> <p>Fluffy is my favourite.</p> <img src="fluffy.jpg" alt="She likes playing with a ball of yarn."> <p>She's just too cute.</p> <h2>Miles</h2> <p>My other cat, Miles just eats and sleeps.</p> </article>
<article> <h1>Photography</h1> <h2>Shooting moving targets indoors</h2> <p>The trick here is to know how to anticipate; to know at what speed and what distance the subject will pass by.</p> <img src="fluffy.jpg" alt="A cat flying by, chasing a ball of yarn, can be photographed quite nicely using this technique."> <h2>Nature by night</h2> <p>To achieve this, you'll need either an extremely sensitive film, or immense flash lights.</p> </article>
<article> <h1>About me</h1> <h2>My pets</h2> <p>I've got a cat named Fluffy and a dog named Miles.</p> <img src="fluffy.jpg" alt="Fluffy, my cat, tends to keep itself busy."> <p>My dog Miles and I like go on long walks together.</p> <h2>music</h2> <p>After our walks, having emptied my mind, I like listening to Bach.</p> </article>
<article> <h1>Fluffy and the Yarn</h1> <p>Fluffy was a cat who liked to play with yarn. He also liked to jump.</p> <aside><img src="fluffy.jpg" alt="" title="Fluffy"></aside> <p>He would play in the morning, he would play in the evening.</p> </article>
Except where otherwise specified, the alt
attribute must be
specified and its value must not be empty; the value must be an appropriate replacement for the
image. The specific requirements for the alt
attribute depend on
what the image is intended to represent, as described in the following sections.
The most general rule to consider when writing alternative text is the following: the
intent is that replacing every image with the text of its alt
attribute not change the meaning of the page.
So, in general, alternative text can be written by considering what one would have written had one not been able to include the image.
A corollary to this is that the alt
attribute's value should
never contain text that could be considered the image's caption, title, or
legend. It is supposed to contain replacement text that could be used by users
instead of the image; it is not meant to supplement the image. The title
attribute can be used for supplemental information.
Another corollary is that the alt
attribute's value should
not repeat information that is already provided in the prose next to the image.
One way to think of alternative text is to think about how you would read the page containing the image to someone over the phone, without mentioning that there is an image present. Whatever you say instead of the image is typically a good start for writing the alternative text.
When an a element that creates a hyperlink, or a button
element, has no textual content but contains one or more images, the alt
attributes must contain text that together convey the purpose of
the link or button.
In this example, a user is asked to pick his preferred colour from a list of three. Each colour is given by an image, but for users who have configured their user agent not to display images, the colour names are used instead:
<h1>Pick your colour</h1> <ul> <li><a href="green.html"><img src="green.jpeg" alt="Green"></a></li> <li><a href="blue.html"><img src="blue.jpeg" alt="Blue"></a></li> <li><a href="red.html"><img src="red.jpeg" alt="Red"></a></li> </ul>
In this example, each button has a set of images to indicate the kind of colour output desired by the user. The first image is used in each case to give the alternative text.
<button name="rgb"><img src="red" alt="RGB"><img src="green" alt=""><img src="blue" alt=""></button> <button name="cmyk"><img src="cyan" alt="CMYK"><img src="magenta" alt=""><img src="yellow" alt=""><img src="black" alt=""></button>
Since each image represents one part of the text, it could also be written like this:
<button name="rgb"><img src="red" alt="R"><img src="green" alt="G"><img src="blue" alt="B"></button> <button name="cmyk"><img src="cyan" alt="C"><img src="magenta" alt="M"><img src="yellow" alt="Y"><img src="black" alt="K"></button>
However, with other alternative text, this might not work, and putting all the alternative text into one image in each case might make more sense:
<button name="rgb"><img src="red" alt="sRGB profile"><img src="green" alt=""><img src="blue" alt=""></button> <button name="cmyk"><img src="cyan" alt="CMYK profile"><img src="magenta" alt=""><img src="yellow" alt=""><img src="black" alt=""></button>
Sometimes something can be more clearly stated in graphical form, for example as a flowchart, a
diagram, a graph, or a simple map showing directions. In such cases, an image can be given using
the img
element, but the lesser textual version must still be given, so that users
who are unable to view the image (e.g. because they have a very slow connection, or because they
are using a text-only browser, or because they are listening to the page being read out by a
hands-free automobile voice Web browser, or simply because they are blind) are still able to
understand the message being conveyed.
The text must be given in the alt
attribute, and must convey
the same message as the image specified in the src
attribute.
It is important to realise that the alternative text is a replacement for the image, not a description of the image.
In the following example we have a flowchart
in image form, with text in the alt
attribute rephrasing the
flowchart in prose form:
<p>In the common case, the data handled by the tokenization stage comes from the network, but it can also come from script.</p> <p><img src="images/parsing-model-overview.png" alt="The Network passes data to the Input Stream Preprocessor, which passes it to the Tokenizer, which passes it to the Tree Construction stage. From there, data goes to both the DOM and to Script Execution. Script Execution is linked to the DOM, and, using document.write(), passes data to the Tokenizer."></p>
Here's another example, showing a good solution and a bad solution to the problem of including an image in a description.
First, here's the good solution. This sample shows how the alternative text should just be what you would have put in the prose if the image had never existed.
<!-- This is the correct way to do things. --> <p> You are standing in an open field west of a house. <img src="house.jpeg" alt="The house is white, with a boarded front door."> There is a small mailbox here. </p>
Second, here's the bad solution. In this incorrect way of doing things, the alternative text is simply a description of the image, instead of a textual replacement for the image. It's bad because when the image isn't shown, the text doesn't flow as well as in the first example.
<!-- This is the wrong way to do things. --> <p> You are standing in an open field west of a house. <img src="house.jpeg" alt="A white house, with a boarded front door."> There is a small mailbox here. </p>
Text such as "Photo of white house with boarded door" would be equally bad alternative text
(though it could be suitable for the title
attribute or in the
figcaption
element of a figure
with this image).
A document can contain information in iconic form. The icon is intended to help users of visual browsers to recognise features at a glance.
In some cases, the icon is supplemental to a text label conveying the same meaning. In those
cases, the alt
attribute must be present but must be empty.
Here the icons are next to text that conveys the same meaning, so they have an empty alt
attribute:
<nav> <p><a href="/help/"><img src="/icons/help.png" alt=""> Help</a></p> <p><a href="/configure/"><img src="/icons/configuration.png" alt=""> Configuration Tools</a></p> </nav>
In other cases, the icon has no text next to it describing what it means; the icon is supposed
to be self-explanatory. In those cases, an equivalent textual label must be given in the alt
attribute.
Here, posts on a news site are labeled with an icon indicating their topic.
<body> <article> <header> <h1>Ratatouille wins <i>Best Movie of the Year</i> award</h1> <p><img src="movies.png" alt="Movies"></p> </header> <p>Pixar has won yet another <i>Best Movie of the Year</i> award, making this its 8th win in the last 12 years.</p> </article> <article> <header> <h1>Latest TWiT episode is online</h1> <p><img src="podcasts.png" alt="Podcasts"></p> </header> <p>The latest TWiT episode has been posted, in which we hear several tech news stories as well as learning much more about the iPhone. This week, the panelists compare how reflective their iPhones' Apple logos are.</p> </article> </body>
Many pages include logos, insignia, flags, or emblems, which stand for a particular entity such as a company, organization, project, band, software package, country, or some such.
If the logo is being used to represent the entity, e.g. as a page heading, the alt
attribute must contain the name of the entity being represented by
the logo. The alt
attribute must not contain text like
the word "logo", as it is not the fact that it is a logo that is being conveyed, it's the entity
itself.
If the logo is being used next to the name of the entity that it represents, then the logo is
supplemental, and its alt
attribute must instead be empty.
If the logo is merely used as decorative material (as branding, or, for example, as a side image in an article that mentions the entity to which the logo belongs), then the entry below on purely decorative images applies. If the logo is actually being discussed, then it is being used as a phrase or paragraph (the description of the logo) with an alternative graphical representation (the logo itself), and the first entry above applies.
In the following snippets, all four of the above cases are present. First, we see a logo used to represent a company:
<h1><img src="XYZ.gif" alt="The XYZ company"></h1>
Next, we see a paragraph which uses a logo right next to the company name, and so doesn't have any alternative text:
<article> <h2>News</h2> <p>We have recently been looking at buying the <img src="alpha.gif" alt=""> ΑΒΓ company, a small Greek company specializing in our type of product.</p>
In this third snippet, we have a logo being used in an aside, as part of the larger article discussing the acquisition:
<aside><p><img src="alpha-large.gif" alt=""></p></aside> <p>The ΑΒΓ company has had a good quarter, and our pie chart studies of their accounts suggest a much bigger blue slice than its green and orange slices, which is always a good sign.</p> </article>
Finally, we have an opinion piece talking about a logo, and the logo is therefore described in detail in the alternative text.
<p>Consider for a moment their logo:</p> <p><img src="/images/logo" alt="It consists of a green circle with a green question mark centered inside it."></p> <p>How unoriginal can you get? I mean, oooooh, a question mark, how <em>revolutionary</em>, how utterly <em>ground-breaking</em>, I'm sure everyone will rush to adopt those specifications now! They could at least have tried for some sort of, I don't know, sequence of rounded squares with varying shades of green and bold white outlines, at least that would look good on the cover of a blue book.</p>
This example shows how the alternative text should be written such that if the image isn't available, and the text is used instead, the text flows seamlessly into the surrounding text, as if the image had never been there in the first place.
Sometimes, an image just consists of text, and the purpose of the image is not to highlight the actual typographic effects used to render the text, but just to convey the text itself.
In such cases, the alt
attribute must be present but must
consist of the same text as written in the image itself.
Consider a graphic containing the text "Earth Day", but with the letters all decorated with flowers and plants. If the text is merely being used as a heading, to spice up the page for graphical users, then the correct alternative text is just the same text "Earth Day", and no mention need be made of the decorations:
<h1><img src="earthdayheading.png" alt="Earth Day"></h1>
An illuminated manuscript might use graphics for some of its images. The alternative text in such a situation is just the character that the image represents.
<p><img src="initials/o.svg" alt="O">nce upon a time and a long long time ago, late at night, when it was dark, over the hills, through the woods, across a great ocean, in a land far away, in a small house, on a hill, under a full moon...
When an image is used to represent a character that cannot otherwise be represented in Unicode, for example gaiji, itaiji, or new characters such as novel currency symbols, the alternative text should be a more conventional way of writing the same thing, e.g. using the phonetic hiragana or katakana to give the character's pronunciation.
In this example from 1997, a new-fangled currency symbol that looks like a curly E with two bars in the middle instead of one is represented using an image. The alternative text gives the character's pronunication.
<p>Only <img src="euro.png" alt="euro ">5.99!
An image should not be used if Unicode characters would serve an identical purpose. Only when the text cannot be directly represented using Unicode, e.g. because of decorations or because the character is not in the Unicode character set (as in the case of gaiji), would an image be appropriate.
If an author is tempted to use an image because their default system font does not support a given character, then Web Fonts are a better solution than images.
In many cases, the image is actually just supplementary, and its presence merely reinforces the
surrounding text. In these cases, the alt
attribute must be
present but its value must be the empty string.
In general, an image falls into this category if removing the image doesn't make the page any less useful, but including the image makes it a lot easier for users of visual browsers to understand the concept.
A flowchart that repeats the previous paragraph in graphical form:
<p>The Network passes data to the Input Stream Preprocessor, which passes it to the Tokenizer, which passes it to the Tree Construction stage. From there, data goes to both the DOM and to Script Execution. Script Execution is linked to the DOM, and, using document.write(), passes data to the Tokenizer.</p> <p><img src="images/parsing-model-overview.png" alt=""></p>
In these cases, it would be wrong to include alternative text that consists of just a caption.
If a caption is to be included, then either the title
attribute
can be used, or the figure
and figcaption
elements can be used. In the
latter case, the image would in fact be a phrase or paragraph with an alternative graphical
representation, and would thus require alternative text.
<!-- Using the title="" attribute --> <p>The Network passes data to the Input Stream Preprocessor, which passes it to the Tokenizer, which passes it to the Tree Construction stage. From there, data goes to both the DOM and to Script Execution. Script Execution is linked to the DOM, and, using document.write(), passes data to the Tokenizer.</p> <p><img src="images/parsing-model-overview.png" alt="" title="Flowchart representation of the parsing model."></p>
<!-- Using <figure> and <figcaption> --> <p>The Network passes data to the Input Stream Preprocessor, which passes it to the Tokenizer, which passes it to the Tree Construction stage. From there, data goes to both the DOM and to Script Execution. Script Execution is linked to the DOM, and, using document.write(), passes data to the Tokenizer.</p> <figure> <img src="images/parsing-model-overview.png" alt="The Network leads to the Input Stream Preprocessor, which leads to the Tokenizer, which leads to the Tree Construction stage. The Tree Construction stage leads to two items. The first is Script Execution, which leads via document.write() back to the Tokenizer. The second item from which Tree Construction leads is the DOM. The DOM is related to the Script Execution."> <figcaption>Flowchart representation of the parsing model.</figcaption> </figure>
<!-- This is WRONG. Do not do this. Instead, do what the above examples do. --> <p>The Network passes data to the Input Stream Preprocessor, which passes it to the Tokenizer, which passes it to the Tree Construction stage. From there, data goes to both the DOM and to Script Execution. Script Execution is linked to the DOM, and, using document.write(), passes data to the Tokenizer.</p> <p><img src="images/parsing-model-overview.png" alt="Flowchart representation of the parsing model."></p> <!-- Never put the image's caption in the alt="" attribute! -->
A graph that repeats the previous paragraph in graphical form:
<p>According to a study covering several billion pages, about 62% of documents on the Web in 2007 triggered the Quirks rendering mode of Web browsers, about 30% triggered the Almost Standards mode, and about 9% triggered the Standards mode.</p> <p><img src="rendering-mode-pie-chart.png" alt=""></p>
Sometimes, an image is not critical to the content, but is nonetheless neither purely
decorative nor entirely redundant with the text. In these cases, the alt
attribute must be present, and its value should either be the
empty string, or a textual representation of the information that the image conveys. If the image
has a caption giving the image's title, then the alt
attribute's value must not be empty (as that would be quite confusing for non-visual readers).
Consider a news article about a political figure, in which the individual's face was shown in an image that, through a style sheet, is floated to the right. The image is not purely decorative, as it is relevant to the story. The image is not entirely redundant with the story either, as it shows what the politician looks like. Whether any alternative text need be provided is an authoring decision, in part influenced by whether the image colours the interpretation of the prose.
In this first variant, the image is shown without context, and no alternative text is provided:
<p><img src="alexsalmond.jpeg" alt=""> Ahead of today's referendum, the First Minister of Scotland, Alex Salmond, wrote an open letter to all registered voters. In it, he admitted that all countries make mistakes.</p>
If the picture is just a face, there might be no value in describing it. It's of no interest to the reader whether the individual has red hair or blond hair, whether the individual has white skin or black skin, whether the individual has one eye or two eyes.
However, if the picture is more dynamic, for instance showing the politician as angry, or particularly happy, or devastated, some alternative text would be useful in setting the tone of the article, a tone that might otherwise be missed:
<p><img src="alexsalmond.jpeg" alt="Alex Salmond is sad."> Ahead of today's referendum, the First Minister of Scotland, Alex Salmond, wrote an open letter to all registered voters. In it, he admitted that all countries make mistakes.</p>
<p><img src="alexsalmond.jpeg" alt="Alex Salmond is ecstatic!"> Ahead of today's referendum, the First Minister of Scotland, Alex Salmond, wrote an open letter to all registered voters. In it, he admitted that all countries make mistakes.</p>
Whether the individual was "sad" or "ecstatic" makes a difference to how the rest of the paragraph is to be interpreted: is he likely saying that he is resigned to the populace making a bad choice in the upcoming referendum, or is he saying that the election was a mistake but the likely turnout will make it irrelevant? The interpretation varies based on the image.
If the image has a caption, then including alternative text avoids leaving the non-visual user confused as to what the caption refers to.
<p>Ahead of today's referendum, the First Minister of Scotland, Alex Salmond, wrote an open letter to all registered voters. In it, he admitted that all countries make mistakes.</p> <figure> <img src="alexsalmond.jpeg" alt="A high forehead, cheerful disposition, and dark hair round out Alex Salmond's face."> <figcaption> Alex Salmond, SNP. Photo © 2014 PolitiPhoto. </figcaption> </figure>
If an image is decorative but isn't especially page-specific — for example an image that forms part of a site-wide design scheme — the image should be specified in the site's CSS, not in the markup of the document.
However, a decorative image that isn't discussed by the surrounding text but still has some
relevance can be included in a page using the img
element. Such images are
decorative, but still form part of the content. In these cases, the alt
attribute must be present but its value must be the empty
string.
Examples where the image is purely decorative despite being relevant would include things like a photo of the Black Rock City landscape in a blog post about an event at Burning Man, or an image of a painting inspired by a poem, on a page reciting that poem. The following snippet shows an example of the latter case (only the first verse is included in this snippet):
<h1>The Lady of Shalott</h1> <p><img src="shalott.jpeg" alt=""></p> <p>On either side the river lie<br> Long fields of barley and of rye,<br> That clothe the wold and meet the sky;<br> And through the field the road run by<br> To many-tower'd Camelot;<br> And up and down the people go,<br> Gazing where the lilies blow<br> Round an island there below,<br> The island of Shalott.</p>
When a picture has been sliced into smaller image files that are then displayed together to
form the complete picture again, one of the images must have its alt
attribute set as per the relevant rules that would be appropriate
for the picture as a whole, and then all the remaining images must have their alt
attribute set to the empty string.
In the following example, a picture representing a company logo for XYZ Corp has been split into two pieces, the first containing the letters "XYZ" and the second with the word "Corp". The alternative text ("XYZ Corp") is all in the first image.
<h1><img src="logo1.png" alt="XYZ Corp"><img src="logo2.png" alt=""></h1>
In the following example, a rating is shown as three filled stars and two empty stars. While the alternative text could have been "★★★☆☆", the author has instead decided to more helpfully give the rating in the form "3 out of 5". That is the alternative text of the first image, and the rest have blank alternative text.
<p>Rating: <meter max=5 value=3><img src="1" alt="3 out of 5" ><img src="1" alt=""><img src="1" alt=""><img src="0" alt="" ><img src="0" alt=""></meter></p>
Generally, image maps should be used instead of slicing an image for links.
However, if an image is indeed sliced and any of the components of the sliced picture are the
sole contents of links, then one image per link must have alternative text in its alt
attribute representing the purpose of the link.
In the following example, a picture representing the flying spaghetti monster emblem, with each of the left noodly appendages and the right noodly appendages in different images, so that the user can pick the left side or the right side in an adventure.
<h1>The Church</h1> <p>You come across a flying spaghetti monster. Which side of His Noodliness do you wish to reach out for?</p> <p><a href="?go=left" ><img src="fsm-left.png" alt="Left side. "></a ><img src="fsm-middle.png" alt="" ><a href="?go=right"><img src="fsm-right.png" alt="Right side."></a></p>
In some cases, the image is a critical part of the content. This could be the case, for instance, on a page that is part of a photo gallery. The image is the whole point of the page containing it.
How to provide alternative text for an image that is a key part of the content depends on the image's provenance.
When it is possible for detailed alternative text to be provided, for example if the image is
part of a series of screenshots in a magazine review, or part of a comic strip, or is a
photograph in a blog entry about that photograph, text that can serve as a substitute for the
image must be given as the contents of the alt
attribute.
A screenshot in a gallery of screenshots for a new OS, with some alternative text:
<figure> <img src="KDE%20Light%20desktop.png" alt="The desktop is blue, with icons along the left hand side in two columns, reading System, Home, K-Mail, etc. A window is open showing that menus wrap to a second line if they cannot fit in the window. The window has a list of icons along the top, with an address bar below it, a list of icons for tabs along the left edge, a status bar on the bottom, and two panes in the middle. The desktop has a bar at the bottom of the screen with a few buttons, a pager, a list of open applications, and a clock."> <figcaption>Screenshot of a KDE desktop.</figcaption> </figure>
A graph in a financial report:
<img src="sales.gif" title="Sales graph" alt="From 1998 to 2005, sales increased by the following percentages with each year: 624%, 75%, 138%, 40%, 35%, 9%, 21%">
Note that "sales graph" would be inadequate alternative text for a sales graph. Text that would be a good caption is not generally suitable as replacement text.
In certain cases, the nature of the image might be such that providing thorough alternative text is impractical. For example, the image could be indistinct, or could be a complex fractal, or could be a detailed topographical map.
In these cases, the alt
attribute must contain some
suitable alternative text, but it may be somewhat brief.
Sometimes there simply is no text that can do justice to an image. For example, there is little that can be said to usefully describe a Rorschach inkblot test. However, a description, even if brief, is still better than nothing:
<figure> <img src="/commons/a/a7/Rorschach1.jpg" alt="A shape with left-right symmetry with indistinct edges, with a small gap in the center, two larger gaps offset slightly from the center, with two similar gaps under them. The outline is wider in the top half than the bottom half, with the sides extending upwards higher than the center, and the center extending below the sides."> <figcaption>A black outline of the first of the ten cards in the Rorschach inkblot test.</figcaption> </figure>
Note that the following would be a very bad use of alternative text:
<!-- This example is wrong. Do not copy it. --> <figure> <img src="/commons/a/a7/Rorschach1.jpg" alt="A black outline of the first of the ten cards in the Rorschach inkblot test."> <figcaption>A black outline of the first of the ten cards in the Rorschach inkblot test.</figcaption> </figure>
Including the caption in the alternative text like this isn't useful because it effectively duplicates the caption for users who don't have images, taunting them twice yet not helping them any more than if they had only read or heard the caption once.
Another example of an image that defies full description is a fractal, which, by definition, is infinite in detail.
The following example shows one possible way of providing alternative text for the full view of an image of the Mandelbrot set.
<img src="ms1.jpeg" alt="The Mandelbrot set appears as a cardioid with its cusp on the real axis in the positive direction, with a smaller bulb aligned along the same center line, touching it in the negative direction, and with these two shapes being surrounded by smaller bulbs of various sizes.">
Similarly, a photograph of a person's face, for example in a biography, can be considered quite relevant and key to the content, but it can be hard to fully substitute text for
<section class="bio"> <h1>A Biography of Isaac Asimov</h1> <p>Born <b>Isaak Yudovich Ozimov</b> in 1920, Isaac was a prolific author.</p> <p><img src="headpics/asimov.jpeg" alt="Isaac Asimov had dark hair, a tall forehead, and wore glasses. Later in life, he wore long white sideburns."> <p>Asimov was born in Russia, and moved to the US when he was three years old.</p> <p>... </section>
In such cases it is unnecessary (and indeed discouraged) to include a reference to the presence of the image itself in the alternative text, since such text would be redundant with the browser itself reporting the presence of the image. For example, if the alternative text was "A photo of Isaac Asimov", then a conforming user agent might read that out as "(Image) A photo of Isaac Asimov" rather than the more useful "(Image) Isaac Asimov had dark hair, a tall forehead, and wore glasses...".
In some unfortunate cases, there might be no alternative text available at all, either because the image is obtained in some automated fashion without any associated alternative text (e.g. a Webcam), or because the page is being generated by a script using user-provided images where the user did not provide suitable or usable alternative text (e.g. photograph sharing sites), or because the author does not himself know what the images represent (e.g. a blind photographer sharing an image on his blog).
In such cases, the alt
attribute may be omitted, but one of
the following conditions must be met as well:
The img
element is in a
figure
element that contains a figcaption
element that contains
content other than inter-element whitespace, and, ignoring the
figcaption
element and its descendants, the figure
element has no
flow content descendants other than inter-element whitespace and the
img
element.
The title
attribute is present and has a non-empty
value.
Relying on the title
attribute is currently
discouraged as many user agents do not expose the attribute in an accessible manner as
required by this specification (e.g. requiring a pointing device such as a mouse to cause a
tooltip to appear, which excludes keyboard-only users and touch-only users, such as anyone
with a modern phone or tablet).
Such cases are to be kept to an absolute minimum. If there is even the slightest
possibility of the author having the ability to provide real alternative text, then it would not
be acceptable to omit the alt
attribute.
A photo on a photo-sharing site, if the site received the image with no metadata other than the caption, could be marked up as follows:
<figure> <img src="1100670787_6a7c664aef.jpg"> <figcaption>Bubbles traveled everywhere with us.</figcaption> </figure>
It would be better, however, if a detailed description of the important parts of the image obtained from the user and included on the page.
A blind user's blog in which a photo taken by the user is shown. Initially, the user might not have any idea what the photo he took shows:
<article> <h1>I took a photo</h1> <p>I went out today and took a photo!</p> <figure> <img src="photo2.jpeg"> <figcaption>A photograph taken blindly from my front porch.</figcaption> </figure> </article>
Eventually though, the user might obtain a description of the image from his friends and could then include alternative text:
<article> <h1>I took a photo</h1> <p>I went out today and took a photo!</p> <figure> <img src="photo2.jpeg" alt="The photograph shows my squirrel feeder hanging from the edge of my roof. It is half full, but there are no squirrels around. In the background, out-of-focus trees fill the shot. The feeder is made of wood with a metal grate, and it contains peanuts. The edge of the roof is wooden too, and is painted white with light blue streaks."> <figcaption>A photograph taken blindly from my front porch.</figcaption> </figure> </article>
Sometimes the entire point of the image is that a textual description is not available, and
the user is to provide the description. For instance, the point of a CAPTCHA image is to see if
the user can literally read the graphic. Here is one way to mark up a CAPTCHA (note the title
attribute):
<p><label>What does this image say? <img src="captcha.cgi?id=8934" title="CAPTCHA"> <input type=text name=captcha></label> (If you cannot see the image, you can use an <a href="?audio">audio</a> test instead.)</p>
Another example would be software that displays images and asks for alternative text precisely for the purpose of then writing a page with correct alternative text. Such a page could have a table of images, like this:
<table> <thead> <tr> <th> Image <th> Description <tbody> <tr> <td> <img src="2421.png" title="Image 640 by 100, filename 'banner.gif'"> <td> <input name="alt2421"> <tr> <td> <img src="2422.png" title="Image 200 by 480, filename 'ad3.gif'"> <td> <input name="alt2422"> </table>
Notice that even in this example, as much useful information as possible is still included
in the title
attribute.
Since some users cannot use images at all (e.g. because they have a very slow
connection, or because they are using a text-only browser, or because they are listening to the
page being read out by a hands-free automobile voice Web browser, or simply because they are
blind), the alt
attribute is only allowed to be omitted rather
than being provided with replacement text when no alternative text is available and none can be
made available, as in the above examples. Lack of effort from the part of the author is not an
acceptable reason for omitting the alt
attribute.
Generally authors should avoid using img
elements for purposes other than showing
images.
If an img
element is being used for purposes other than showing an image, e.g. as
part of a service to count page views, then the alt
attribute
must be the empty string.
In such cases, the width
and height
attributes should both be set to zero.
This section does not apply to documents that are publicly accessible, or whose target audience is not necessarily personally known to the author, such as documents on a Web site, e-mails sent to public mailing lists, or software documentation.
When an image is included in a private communication (such as an HTML e-mail) aimed at a
specific person who is known to be able to view images, the alt
attribute may be omitted. However, even in such cases authors are strongly urged to include
alternative text (as appropriate according to the kind of image involved, as described in the
above entries), so that the e-mail is still usable should the user use a mail client that does not
support images, or should the document be forwarded on to other users whose abilities might not
include easily seeing images.
Markup generators (such as WYSIWYG authoring tools) should, wherever possible, obtain alternative text from their users. However, it is recognised that in many cases, this will not be possible.
For images that are the sole contents of links, markup generators should examine the link target to determine the title of the target, or the URL of the target, and use information obtained in this manner as the alternative text.
For images that have captions, markup generators should use the figure
and
figcaption
elements, or the title
attribute, to
provide the image's caption.
As a last resort, implementors should either set the alt
attribute to the empty string, under the assumption that the image is a purely decorative image
that doesn't add any information but is still specific to the surrounding content, or omit the
alt
attribute altogether, under the assumption that the image is
a key part of the content.
Markup generators may specify a generator-unable-to-provide-required-alt
attribute on img
elements for which they have been unable to obtain alternative text
and for which they have therefore omitted the alt
attribute. The
value of this attribute must be the empty string. Documents containing such attributes are not
conforming, but conformance checkers will silently
ignore this error.
This is intended to avoid markup generators from being pressured into replacing
the error of omitting the alt
attribute with the even more
egregious error of providing phony alternative text, because state-of-the-art automated
conformance checkers cannot distinguish phony alternative text from correct alternative text.
Markup generators should generally avoid using the image's own file name as the alternative text. Similarly, markup generators should avoid generating alternative text from any content that will be equally available to presentation user agents (e.g. Web browsers).
This is because once a page is generated, it will typically not be updated, whereas the browsers that later read the page can be updated by the user, therefore the browser is likely to have more up-to-date and finely-tuned heuristics than the markup generator did when generating the page.
A conformance checker must report the lack of an alt
attribute as an error unless one of the conditions listed below applies:
The img
element is in a figure
element that satisfies the conditions described above.
The img
element has a title
attribute with a
value that is not the empty string (also as described
above).
The conformance checker has been configured to assume that the document is an e-mail or document intended for a specific person who is known to be able to view images.
The img
element has a (non-conforming) generator-unable-to-provide-required-alt
attribute whose value is the empty string. A conformance checker that is not reporting the lack
of an alt
attribute as an error must also not report the
presence of the empty generator-unable-to-provide-required-alt
attribute as an error. (This case does not represent a case where the document is conforming,
only that the generator could not determine appropriate alternative text — validators are
not required to show an error in this case, because such an error might encourage markup
generators to include bogus alternative text purely in an attempt to silence validators.
Naturally, conformance checkers may report the lack of an alt
attribute as an error even in the presence of the generator-unable-to-provide-required-alt
attribute; for example, there could be a user option to report all conformance errors
even those that might be the more or less inevitable result of using a markup
generator.)
iframe
elementsrc
— Address of the resourcesrcdoc
— A document to render in the iframe
name
— Name of nested browsing contextsandbox
— Security rules for nested contentseamless
— Whether to apply the document's styles to the nested contentallowfullscreen
— Whether to allow the iframe
's contents to use requestFullscreen()
width
— Horizontal dimensionheight
— Vertical dimensioninterface HTMLIFrameElement : HTMLElement { attribute DOMString src; attribute DOMString srcdoc; attribute DOMString name; [PutForwards=value] readonly attribute DOMSettableTokenList sandbox; attribute boolean seamless; attribute boolean allowFullscreen; attribute DOMString width; attribute DOMString height; readonly attribute Document? contentDocument; readonly attribute WindowProxy? contentWindow; Document? getSVGDocument(); };
The iframe
element represents a nested browsing
context.
The src
attribute gives the address of a page
that the nested browsing context is to contain. The attribute, if present, must be a
valid non-empty URL potentially surrounded by spaces. If the itemprop
is specified on an iframe
element, then the
src
attribute must also be specified.
The srcdoc
attribute gives the content of
the page that the nested browsing context is to contain. The value of the attribute
is the source of an iframe
srcdoc
document.
For iframe
elements in HTML documents, the srcdoc
attribute, if present, must have a value using the
HTML syntax that consists of the following syntactic components, in the given order:
html
element.For iframe
elements in XML documents, the srcdoc
attribute, if present, must have a value that matches the
production labeled document
in the XML specification. [XML]
Here a blog uses the srcdoc
attribute in conjunction
with the sandbox
and seamless
attributes described below to provide users of user
agents that support this feature with an extra layer of protection from script injection in the
blog post comments:
<article> <h1>I got my own magazine!</h1> <p>After much effort, I've finally found a publisher, and so now I have my own magazine! Isn't that awesome?! The first issue will come out in September, and we have articles about getting food, and about getting in boxes, it's going to be great!</p> <footer> <p>Written by <a href="/users/cap">cap</a>, 1 hour ago. </footer> <article> <footer> Thirteen minutes ago, <a href="/users/ch">ch</a> wrote: </footer> <iframe seamless sandbox srcdoc="<p>did you get a cover picture yet?"></iframe> </article> <article> <footer> Nine minutes ago, <a href="/users/cap">cap</a> wrote: </footer> <iframe seamless sandbox srcdoc="<p>Yeah, you can see it <a href="/gallery?mode=cover&amp;page=1">in my gallery</a>."></iframe> </article> <article> <footer> Five minutes ago, <a href="/users/ch">ch</a> wrote: </footer> <iframe seamless sandbox srcdoc="<p>hey that's earl's table. <p>you should get earl&amp;me on the next cover."></iframe> </article>
Notice the way that quotes have to be escaped (otherwise the srcdoc
attribute would end prematurely), and the way raw
ampersands (e.g. in URLs or in prose) mentioned in the sandboxed content have to be
doubly escaped — once so that the ampersand is preserved when originally parsing
the srcdoc
attribute, and once more to prevent the
ampersand from being misinterpreted when parsing the sandboxed content.
Furthermore, notice that since the DOCTYPE is optional in
iframe
srcdoc
documents, and the html
,
head
, and body
elements have optional
start and end tags, and the title
element is also optional in iframe
srcdoc
documents, the markup in a srcdoc
attribute can be
relatively succint despite representing an entire document, since only the contents of the
body
element need appear literally in the syntax. The other elements are still
present, but only by implication.
In the HTML syntax, authors need only remember to use U+0022
QUOTATION MARK characters (") to wrap the attribute contents and then to escape all U+0022
QUOTATION MARK (") and U+0026 AMPERSAND (&) characters, and to specify the sandbox
attribute, to ensure safe embedding of content.
Due to restrictions of the XHTML syntax, in XML the U+003C LESS-THAN SIGN character (<) needs to be escaped as well. In order to prevent attribute-value normalization, some of XML's whitespace characters — specifically U+0009 CHARACTER TABULATION (tab), U+000A LINE FEED (LF), and U+000D CARRIAGE RETURN (CR) — also need to be escaped. [XML]
If the src
attribute and the srcdoc
attribute are both specified together, the srcdoc
attribute takes priority. This allows authors to provide
a fallback URL for legacy user agents that do not support the srcdoc
attribute.
When an iframe
element is inserted
into a document that has a browsing context, the user agent must create a nested browsing context, and
then process the iframe
attributes for the "first time".
When an iframe
element is removed
from a document, the user agent must discard the nested browsing context, if any.
This happens without any unload
events firing
(the nested browsing context and its Document
are discarded, not unloaded).
Whenever an iframe
element with a nested browsing context has its
srcdoc
attribute set, changed, or removed, the user agent
must process the iframe
attributes.
Similarly, whenever an iframe
element with a nested browsing context
but with no srcdoc
attribute specified has its src
attribute set, changed, or removed, the user agent must
process the iframe
attributes.
When the user agent is to process the iframe
attributes, it must run
the first appropriate steps from the following list:
srcdoc
attribute is specifiedNavigate the element's child browsing context
to a resource whose Content-Type is text/html
, whose URL
is about:srcdoc
, and whose data consists of the value of the attribute. The
resulting Document
must be considered an iframe
srcdoc
document.
src
attribute
specified, and the user agent is processing the iframe
's attributes for the "first
time"Queue a task to run the iframe load event steps.
The task source for this task is the DOM manipulation task source.
If the value of the src
attribute is missing, or its
value is the empty string, let url be the string
"about:blank
".
Otherwise, resolve the value of the src
attribute, relative to the iframe
element.
If that is not successful, then let url be the string
"about:blank
". Otherwise, let url be the resulting
absolute URL.
If there exists an ancestor browsing context whose active document's address, ignoring fragment identifiers, is equal to url, then abort these steps.
Navigate the element's child browsing context to url.
Any navigation required of the user agent in the process
the iframe
attributes algorithm must be completed as an explicit
self-navigation override and with the iframe
element's node document's
browsing context as the source browsing context.
Furthermore, if the active document of the element's child browsing context before such a navigation was not completely loaded at the time of the new navigation, then the navigation must be completed with replacement enabled.
Similarly, if the child browsing context's session history contained
only one Document
when the process the iframe
attributes
algorithm was invoked, and that was the about:blank
Document
created
when the child browsing context was created, then any navigation required of the user agent in that algorithm must be completed
with replacement enabled.
When a Document
in an iframe
is marked as completely
loaded, the user agent must run the iframe load event steps in parallel.
A load
event is also fired at the
iframe
element when it is created if no other data is loaded in it.
Each Document
has an iframe load in progress flag and a mute
iframe load flag. When a Document
is created, these flags must be unset for
that Document
.
The iframe load event steps are as follows:
Let child document be the active document of the
iframe
element's nested browsing context.
If child document has its mute iframe load flag set, abort these steps.
Set child document's iframe load in progress flag.
Fire a simple event named load
at the
iframe
element.
Unset child document's iframe load in progress flag.
This, in conjunction with scripting, can be used to probe the URL space of the local network's HTTP servers. User agents may implement cross-origin access control policies that are stricter than those described above to mitigate this attack, but unfortunately such policies are typically not compatible with existing Web content.
When the iframe
's browsing context's active document is
not ready for post-load tasks, and when anything in the iframe
is delaying the load event of the iframe
's
browsing context's active document, and when the iframe
's
browsing context is in the delaying load
events
mode, the iframe
must delay the load event of its document.
If, during the handling of the load
event, the
browsing context in the iframe
is again navigated, that will further delay the load event.
If, when the element is created, the srcdoc
attribute is not set, and the src
attribute is either also not set or set but its value cannot be
resolved, the browsing context will remain at the initial
about:blank
page.
If the user navigates away from this page, the
iframe
's corresponding WindowProxy
object will proxy new
Window
objects for new Document
objects, but the src
attribute will not change.
The name
attribute, if present, must be a
valid browsing context name. The given value is used to name the nested
browsing context. When the browsing context is created, if the attribute
is present, the browsing context name must be set to the value of this attribute;
otherwise, the browsing context name must be set to the empty string.
Whenever the name
attribute is set, the nested
browsing context's name must be changed to
the new value. If the attribute is removed, the browsing context name must be set to
the empty string.
The sandbox
attribute, when specified,
enables a set of extra restrictions on any content hosted by the iframe
. Its value
must be an unordered set of unique space-separated tokens that are ASCII
case-insensitive. The allowed values are allow-forms
, allow-pointer-lock
, allow-popups
, allow-same-origin
, allow-scripts
, and allow-top-navigation
.
When the attribute is set, the content is treated as being from a unique origin,
forms, scripts, and various potentially annoying APIs are disabled, links are prevented from
targeting other browsing contexts, and plugins are secured.
The allow-same-origin
keyword causes
the content to be treated as being from its real origin instead of forcing it into a unique
origin; the allow-top-navigation
keyword allows the content to navigate its top-level browsing context;
and the allow-forms
, allow-pointer-lock
, allow-popups
and allow-scripts
keywords re-enable forms, the
pointer lock API, popups, and scripts respectively. [POINTERLOCK]
Setting both the allow-scripts
and allow-same-origin
keywords together when the
embedded page has the same origin as the page containing the iframe
allows the embedded page to simply remove the sandbox
attribute and then reload itself, effectively breaking out of the sandbox altogether.
These flags only take effect when the nested browsing context of
the iframe
is navigated. Removing them, or removing the
entire sandbox
attribute, has no effect on an
already-loaded page.
Potentially hostile files should not be served from the same server as the file
containing the iframe
element. Sandboxing hostile content is of minimal help if an
attacker can convince the user to just visit the hostile content directly, rather than in the
iframe
. To limit the damage that can be caused by hostile HTML content, it should be
served from a separate dedicated domain. Using a different domain ensures that scripts in the
files are unable to attack the site, even if the user is tricked into visiting those pages
directly, without the protection of the sandbox
attribute.
When an iframe
element with a sandbox
attribute has its nested browsing context created (before the initial
about:blank
Document
is created), and when an iframe
element's sandbox
attribute is set or changed while it
has a nested browsing context, the user agent must parse the sandboxing directive using the attribute's value as the input, the iframe
element's nested browsing context's
iframe
sandboxing flag set as the output, and, if the
iframe
has an allowfullscreen
attribute, the allow fullscreen flag.
When an iframe
element's sandbox
attribute is removed while it has a nested browsing context, the user agent must
empty the iframe
element's nested browsing context's
iframe
sandboxing flag set as the output.
In this example, some completely-unknown, potentially hostile, user-provided HTML content is embedded in a page. Because it is served from a separate domain, it is affected by all the normal cross-site restrictions. In addition, the embedded page has scripting disabled, plugins disabled, forms disabled, and it cannot navigate any frames or windows other than itself (or any frames or windows it itself embeds).
<p>We're not scared of you! Here is your content, unedited:</p> <iframe sandbox src="http://usercontent.example.net/getusercontent.cgi?id=12193"></iframe>
It is important to use a separate domain so that if the attacker convinces the user to visit that page directly, the page doesn't run in the context of the site's origin, which would make the user vulnerable to any attack found in the page.
In this example, a gadget from another site is embedded. The gadget has scripting and forms enabled, and the origin sandbox restrictions are lifted, allowing the gadget to communicate with its originating server. The sandbox is still useful, however, as it disables plugins and popups, thus reducing the risk of the user being exposed to malware and other annoyances.
<iframe sandbox="allow-same-origin allow-forms allow-scripts" src="http://maps.example.com/embedded.html"></iframe>
Suppose a file A contained the following fragment:
<iframe sandbox="allow-same-origin allow-forms" src=B></iframe>
Suppose that file B contained an iframe also:
<iframe sandbox="allow-scripts" src=C></iframe>
Further, suppose that file C contained a link:
<a href=D>Link</a>
For this example, suppose all the files were served as text/html
.
Page C in this scenario has all the sandboxing flags set. Scripts are disabled, because the
iframe
in A has scripts disabled, and this overrides the allow-scripts
keyword set on the
iframe
in B. Forms are also disabled, because the inner iframe
(in B)
does not have the allow-forms
keyword
set.
Suppose now that a script in A removes all the sandbox
attributes in A and B.
This would change nothing immediately. If the user clicked the link in C, loading page D into the
iframe
in B, page D would now act as if the iframe
in B had the allow-same-origin
and allow-forms
keywords set, because that was the
state of the nested browsing context in the iframe
in A when page B was
loaded.
Generally speaking, dynamically removing or changing the sandbox
attribute is ill-advised, because it can make it quite
hard to reason about what will be allowed and what will not.
The seamless
attribute is a boolean
attribute. When specified, it indicates that the iframe
element's
browsing context is to be rendered in a manner that makes it appear to be part of the
containing document (seamlessly included in the parent document).
An HTML inclusion is effected using this attribute as in the following example.
In this case, the inclusion is of a site-wide navigation bar. Any links in the
iframe
will, in new user agents, be automatically opened in the
iframe
's parent browsing context; for legacy user agents, the site could also
include a base
element with a target
attribute with the value _parent
. Similarly, in new user agents the styles
of the parent page will be automatically applied to the contents of the frame, but to support
legacy user agents authors might wish to include the styles explicitly.
<!DOCTYPE HTML> <title>Mirror Mirror — MovieInfo™</title> <header> <hgroup> <h1>Mirror Mirror</h1> <h2>Part of the MovieInfo™ Database</h2> </hgroup> <nav> <iframe seamless src="nav.inc"></iframe> </nav> </header> ...
An iframe
element is said to be in seamless mode when all of the
following conditions are met:
seamless
attribute is set on the
iframe
element, and
iframe
element's owner Document
's active sandboxing flag
set does not have the sandboxed seamless iframes flag set, and
iframe
element's node document, or
iframe
element's node document, or
iframe
srcdoc
document.
When an iframe
element is in seamless mode, the following
requirements apply:
The user agent must set the seamless browsing context flag to true for that
browsing context. This will cause links to open in the
parent browsing context unless an explicit self-navigation override is used
(target="_self"
).
Media queries in the context of the iframe
's browsing context
(e.g. on media
attributes of style
elements in
Document
s in that iframe
) must be evaluated with respect to the nearest
ancestor browsing context that is not itself being nested through an iframe
that is in seamless
mode. [MQ]
In a CSS-supporting user agent: the user agent must add all the style sheets that apply to
the iframe
element to the cascade of the active document of the
iframe
element's nested browsing context, at the appropriate cascade
levels, before any style sheets specified by the document itself.
In a CSS-supporting user agent: the user agent must, for the purpose of CSS property
inheritance only, treat the root element of the active document of the
iframe
element's nested browsing context as being a child of the
iframe
element. (Thus inherited properties on the root element of the document in
the iframe
will inherit the computed values of those properties on the
iframe
element instead of taking their initial values.)
In visual media, in a CSS-supporting user agent: the user agent should set the intrinsic
width of the iframe
to the width that the element would have if it was a
non-replaced block-level element with 'width: auto', unless that width would be zero (e.g. if the
element is floating or absolutely positioned), in which case the user agent should set the
intrinsic width of the iframe
to the shrink-to-fit width of the root element (if
any) of the content rendered in the iframe
.
In visual media, in a CSS-supporting user agent: the user agent should set the intrinsic
height of the iframe
to the shortest height that would make the content rendered in
the iframe
at its current width (as given in the previous bullet point) have no
scrollable overflow at its bottom edge. Scrollable overflow is any overflow that would increase the range to
which a scrollbar or other scrolling mechanism can scroll.
In visual media, in a CSS-supporting user agent: the user agent must force the height of the
initial containing block of the active document of the nested browsing
context of the iframe
to zero.
This is intended to get around the otherwise circular dependency of percentage dimensions that depend on the height of the containing block, thus affecting the height of the document's bounding box, thus affecting the height of the viewport, thus affecting the size of the initial containing block.
In speech media, the user agent should render the nested browsing context without announcing that it is a separate document.
User agents should, in general, act as if the active document of the
iframe
's nested browsing context was part of the document that the
iframe
is in, if any.
For example if the user agent supports listing all the links in a document, links in "seamlessly" nested documents would be included in that list without being significantly distinguished from links in the document itself.
The nested browsing context's Window
object's
cross-boundary event parent is the browsing context container. [DOM]
If the attribute is not specified, or if the origin conditions listed above are not met, then the user agent should render the nested browsing context in a manner that is clearly distinguishable as a separate browsing context, and the seamless browsing context flag must be set to false for that browsing context.
It is important that user agents recheck the above conditions whenever the
active document of the nested browsing context of the
iframe
changes, such that the seamless browsing context flag gets unset
if the nested browsing context is navigated to another
origin.
The attribute can be set or removed dynamically, with the rendering updating in tandem.
The contenteditable
attribute does not
propagate into seamless
iframe
s.
The allowfullscreen
attribute is a
boolean attribute. When specified, it indicates that Document
objects in
the iframe
element's browsing context are to be allowed to use requestFullscreen()
(if it's not blocked for other
reasons, e.g. there is another ancestor iframe
without this attribute set).
Here, an iframe
is used to embed a player from a video site. The allowfullscreen
attribute is needed to enable the
player to show its video full-screen.
<article> <header> <p><img src="/usericons/1627591962735"> <b>Fred Flintstone</b></p> <p><a href="/posts/3095182851" rel=bookmark>12:44</a> — <a href="#acl-3095182851">Private Post</a></p> </header> <main> <p>Check out my new ride!</p> <iframe src="https://video.example.com/embed?id=92469812" allowfullscreen></iframe> </main> </article>
The iframe
element supports dimension attributes for cases where the
embedded content has specific dimensions (e.g. ad units have well-defined dimensions).
An iframe
element never has fallback content, as it will always
create a nested browsing context, regardless of whether the specified initial
contents are successfully used.
Descendants of iframe
elements represent nothing. (In legacy user agents that do
not support iframe
elements, the contents would be parsed as markup that could act as
fallback content.)
When used in HTML documents, the allowed content model
of iframe
elements is text, except that invoking the HTML fragment parsing
algorithm with the iframe
element as the context element and the text contents as the input must result in a list of nodes that are all phrasing content,
with no parse errors having occurred, with no script
elements being anywhere in the list or as descendants of elements in the list, and with all the
elements in the list (including their descendants) being themselves conforming.
The iframe
element must be empty in XML documents.
The HTML parser treats markup inside iframe
elements as
text.
The IDL attributes src
, srcdoc
, name
, sandbox
, and seamless
must reflect the respective
content attributes of the same name.
The allowFullscreen
IDL attribute
must reflect the allowfullscreen
content attribute.
The contentDocument
IDL attribute
must return the Document
object of the active document of the
iframe
element's nested browsing context, if any and if its
effective script origin is the same origin as the effective script
origin specified by the incumbent settings object, or null otherwise.
The contentWindow
IDL attribute must
return the WindowProxy
object of the iframe
element's nested
browsing context, if any, or null otherwise.
Here is an example of a page using an iframe
to include advertising from an
advertising broker:
<iframe src="http://ads.example.com/?customerid=923513721&format=banner" width="468" height="60"></iframe>
embed
elementsrc
— Address of the resourcetype
— Type of embedded resourcewidth
— Horizontal dimensionheight
— Vertical dimensioninterface HTMLEmbedElement : HTMLElement { attribute DOMString src; attribute DOMString type; attribute DOMString width; attribute DOMString height; Document? getSVGDocument(); legacycaller any (any... arguments); };
Depending on the type of content instantiated by the
embed
element, the node may also support other
interfaces.
The embed
element provides an integration point for an external (typically
non-HTML) application or interactive content.
The src
attribute gives the address of the
resource being embedded. The attribute, if present, must contain a valid non-empty URL
potentially surrounded by spaces.
If the itemprop
attribute is specified on an
embed
element, then the src
attribute must also
be specified.
The type
attribute, if present, gives the
MIME type by which the plugin to instantiate is selected. The value must be a
valid MIME type. If both the type
attribute and
the src
attribute are present, then the type
attribute must specify the same type as the explicit Content-Type metadata of the resource given by the src
attribute.
While any of the following conditions are occurring, any plugin instantiated for
the element must be removed, and the embed
element represents
nothing:
The element has neither a src
attribute nor a type
attribute.
The element has a media element ancestor.
The element has an ancestor object
element that is not showing its
fallback content.
An embed
element is said to be potentially
active when the following conditions are all met simultaneously:
Document
or was in a Document
the last time the event loop
reached step 1.src
attribute set or a type
attribute set (or both).src
attribute is either absent or its value
is not the empty string.object
element that is not showing its
fallback content.Whenever an embed
element that was not potentially active becomes potentially active, and whenever a potentially active embed
element that is
remaining potentially active and has its src
attribute set, changed, or removed or its type
attribute set, changed, or removed, the user agent must
queue a task using the embed task source to run the
embed
element setup steps.
The embed
element setup steps are as follows:
If another task has since been queued to run the
embed
element setup steps for this element, then abort these steps.
src
attribute setThe user agent must resolve the value of the element's
src
attribute, relative to the element. If that is
successful, the user agent should fetch the resulting absolute
URL, from the element's browsing context scope origin if it has one. The task that
is queued by the networking task source once
the resource has been fetched must run the following steps:
If another task has since been queued to run
the embed
element setup steps for this element, then abort these
steps.
Determine the type of the content being embedded, as follows (stopping at the first substep that determines the type):
If the element has a type
attribute, and that
attribute's value is a type that a plugin supports, then the value of the
type
attribute is the content's type.
Otherwise, if applying the URL parser algorithm to the URL of the specified resource (after any redirects) results in a parsed URL whose path component matches a pattern that a plugin supports, then the content's type is the type that that plugin can handle.
For example, a plugin might say that it can handle resources with path components that end with the four character string
".swf
".
Otherwise, if the specified resource has explicit Content-Type metadata, then that is the content's type.
Otherwise, the content has no type and there can be no appropriate plugin for it.
If the previous step determined that the content's
type is image/svg+xml
, then run the following substeps:
If the embed
element is not associated with a nested browsing
context, associate the element with a newly created nested browsing
context, and, if the element has a name
attribute, set the browsing context name of the element's nested
browsing context to the value of this attribute.
Navigate the nested browsing context to
the fetched resource, with replacement enabled, and with the
embed
element's node document's browsing context as the source
browsing context. (The src
attribute of the
embed
element doesn't get updated if the browsing context gets further
navigated to other locations.)
The embed
element now represents its associated
nested browsing context.
Otherwise, find and instantiate an appropriate plugin based on the content's type, and hand that plugin the
content of the resource, replacing any previously instantiated plugin for the element. The
embed
element now represents this plugin instance.
Once the resource or plugin has completely loaded, queue a task to
fire a simple event named load
at the
element.
Whether the resource is fetched successfully or not (e.g. whether the response code was a 2xx code or equivalent) must be ignored when determining the content's type and when handing the resource to the plugin.
This allows servers to return data for plugins even with error responses (e.g. HTTP 500 Internal Server Error codes can still contain plugin data).
Fetching the resource must delay the load event of the element's node document.
src
attribute setThe user agent should find and instantiate an appropriate plugin based on the
value of the type
attribute. The embed
element now represents this plugin instance.
Once the plugin is completely loaded, queue a task to fire a simple
event named load
at the element.
The embed
element has no fallback content. If the user agent can't
find a suitable plugin when attempting to find and instantiate one for the algorithm above, then
the user agent must use a default plugin. This default could be as simple as saying "Unsupported
Format".
Whenever an embed
element that was potentially
active stops being potentially active, any
plugin that had been instantiated for that element must be unloaded.
When a plugin is to be instantiated but it cannot be secured and the sandboxed plugins browsing context
flag is set on the embed
element's node document's active
sandboxing flag set, then the user agent must not instantiate the plugin, and
must instead render the embed
element in a manner that conveys that the
plugin was disabled. The user agent may offer the user the option to override the
sandbox and instantiate the plugin anyway; if the user invokes such an option, the
user agent must act as if the conditions above did not apply for the purposes of this element.
Plugins that cannot be secured are disabled in sandboxed browsing contexts because they might not honor the restrictions imposed by the sandbox (e.g. they might allow scripting even when scripting in the sandbox is disabled). User agents should convey the danger of overriding the sandbox to the user if an option to do so is provided.
When an embed
element represents a nested browsing context: if the
embed
element's nested browsing context's active document
is not ready for post-load tasks, and when anything is delaying the load event of the embed
element's browsing
context's active document, and when the embed
element's
browsing context is in the delaying load
events mode, the embed
must delay the load event of its
document.
The task source for the tasks mentioned in this section is the DOM manipulation task source.
Any namespace-less attribute other than name
, align
, hspace
, and vspace
may be
specified on the embed
element, so long as its name is XML-compatible
and contains no uppercase ASCII letters. These attributes are then passed as
parameters to the plugin.
All attributes in HTML documents get lowercased automatically, so the restriction on uppercase letters doesn't affect such documents.
The four exceptions are to exclude legacy attributes that have side-effects beyond just sending parameters to the plugin.
The user agent should pass the names and values of all the attributes of the embed
element that have no namespace to the plugin used, when one is instantiated.
The HTMLEmbedElement
object representing the element must expose the scriptable
interface of the plugin instantiated for the embed
element, if any. At a
minimum, this interface must implement the legacy caller
operation. (It is suggested that the default behaviour of this legacy caller operation, e.g.
the behaviour of the default plugin's legacy caller operation, be to throw a
NotSupportedError
exception.)
The embed
element supports dimension attributes.
The IDL attributes src
and type
each must reflect the respective
content attributes of the same name.
Here's a way to embed a resource that requires a proprietary plugin, like Flash:
<embed src="catgame.swf">
If the user does not have the plugin (for example if the plugin vendor doesn't support the user's platform), then the user will be unable to use the resource.
To pass the plugin a parameter "quality" with the value "high", an attribute can be specified:
<embed src="catgame.swf" quality="high">
This would be equivalent to the following, when using an object
element
instead:
<object data="catgame.swf"> <param name="quality" value="high"> </object>
object
elementusemap
attribute: Interactive content.param
elements, then, transparent.data
— Address of the resourcetype
— Type of embedded resourcetypemustmatch
— Whether the type
attribute and the Content-Type value need to match for the resource to be usedname
— Name of nested browsing contextusemap
— Name of image map to useform
— Associates the control with a form
elementwidth
— Horizontal dimensionheight
— Vertical dimensioninterface HTMLObjectElement : HTMLElement { attribute DOMString data; attribute DOMString type; attribute boolean typeMustMatch; attribute DOMString name; attribute DOMString useMap; readonly attribute HTMLFormElement? form; attribute DOMString width; attribute DOMString height; readonly attribute Document? contentDocument; readonly attribute WindowProxy? contentWindow; Document? getSVGDocument(); readonly attribute boolean willValidate; readonly attribute ValidityState validity; readonly attribute DOMString validationMessage; boolean checkValidity(); boolean reportValidity(); void setCustomValidity(DOMString error); legacycaller any (any... arguments); };
Depending on the type of content instantiated by the
object
element, the node also supports other
interfaces.
The object
element can represent an external resource, which, depending on the
type of the resource, will either be treated as an image, as a nested browsing
context, or as an external resource to be processed by a plugin.
The data
attribute, if present, specifies the
address of the resource. If present, the attribute must be a valid non-empty URL potentially
surrounded by spaces.
Authors who reference resources from other origins
that they do not trust are urged to use the typemustmatch
attribute defined below. Without that
attribute, it is possible in certain cases for an attacker on the remote host to use the plugin
mechanism to run arbitrary scripts, even if the author has used features such as the Flash
"allowScriptAccess" parameter.
The type
attribute, if present, specifies the
type of the resource. If present, the attribute must be a valid MIME type.
At least one of either the data
attribute or the type
attribute must be present.
If the itemprop
attribute is specified on an object
element, then the data
attribute must also be specified.
The typemustmatch
attribute is a
boolean attribute whose presence indicates that the resource specified by the data
attribute is only to be used if the value of the type
attribute and the Content-Type of the
aforementioned resource match.
The typemustmatch
attribute must not be
specified unless both the data
attribute and the type
attribute are present.
The name
attribute, if present, must be a
valid browsing context name. The given value is used to name the nested
browsing context, if applicable.
Whenever one of the following conditions occur:
object
elements changes to or from showing its
fallback content,
classid
attribute is set, changed, or
removed,
classid
attribute is not present, and
its data
attribute is set, changed, or removed,
classid
attribute nor its
data
attribute are present, and its type
attribute is set, changed, or removed,
...the user agent must queue a task to run the following steps to (re)determine
what the object
element represents. This task
being queued or actively running must delay the load
event of the element's node document.
If the user has indicated a preference that this object
element's fallback
content be shown instead of the element's usual behaviour, then jump to the step below
labeled fallback.
For example, a user could ask for the element's fallback content to be shown because that content uses a format that the user finds more accessible.
If the element has an ancestor media element, or has an ancestor
object
element that is not showing its fallback content, or
if the element is not in a Document
with a
browsing context, or if the element's node document is not fully
active, or if the element is still in the stack of open elements of an
HTML parser or XML parser, or if the element is not being
rendered, then jump to the step below labeled fallback.
If the classid
attribute is present, and has a
value that isn't the empty string, then: if the user agent can find a plugin
suitable according to the value of the classid
attribute, and either plugins aren't being sandboxed or that
plugin can be secured, then that
plugin should be used, and the value of the data
attribute, if any, should be passed to the
plugin. If no suitable plugin can be found, or if the
plugin reports an error, jump to the step below labeled fallback.
If the data
attribute is present and its value is
not the empty string, then:
If the type
attribute is present and its value is
not a type that the user agent supports, and is not a type that the user agent can find a
plugin for, then the user agent may jump to the step below labeled fallback
without fetching the content to examine its real type.
Resolve the URL specified by the data
attribute, relative to the element.
If that failed, fire a simple event named error
at the element, then jump to the step below labeled
fallback.
Fetch the resulting absolute URL, from the element's browsing context scope origin if it has one.
Fetching the resource must delay the load event of the element's node document until the task that is queued by the networking task source once the resource has been fetched (defined next) has been run.
For the purposes of the application cache networking model, this fetch operation is not for a child browsing context (though it might end up being used for one after all, as defined below).
If the resource is not yet available (e.g. because the resource was not available in the cache, so that loading the resource required making a request over the network), then jump to the step below labeled fallback. The task that is queued by the networking task source once the resource is available must restart this algorithm from this step. Resources can load incrementally; user agents may opt to consider a resource "available" whenever enough data has been obtained to begin processing the resource.
If the load failed (e.g. there was an HTTP 404 error, there was a DNS error), fire
a simple event named error
at the element, then jump to
the step below labeled fallback.
Determine the resource type, as follows:
Let the resource type be unknown.
If the object
element has a type
attribute and a typemustmatch
attribute, and
the resource has associated Content-Type metadata, and the
type specified in the resource's Content-Type metadata is
an ASCII case-insensitive match for the value of the element's type
attribute, then let resource type
be that type and jump to the step below labeled handler.
If the object
element has a typemustmatch
attribute, jump to the step below
labeled handler.
If the user agent is configured to strictly obey Content-Type headers for this resource, and the resource has associated Content-Type metadata, then let the resource type be the type specified in the resource's Content-Type metadata, and jump to the step below labeled handler.
This can introduce a vulnerability, wherein a site is trying to embed a resource that uses a particular plugin, but the remote site overrides that and instead furnishes the user agent with a resource that triggers a different plugin with different security characteristics.
If there is a type
attribute present on the
object
element, and that attribute's value is not a type that the user agent
supports, but it is a type that a plugin supports, then let the resource type be the type specified in that type
attribute, and jump to the step below labeled
handler.
Run the appropriate set of steps from the following list:
Let binary be false.
If the type specified in the resource's Content-Type
metadata is "text/plain
", and the result of applying the rules for distinguishing if a resource is
text or binary to the resource is that the resource is not
text/plain
, then set binary to true.
If the type specified in the resource's Content-Type
metadata is "application/octet-stream
", then set binary to true.
If binary is false, then let the resource type be the type specified in the resource's Content-Type metadata, and jump to the step below labeled handler.
If there is a type
attribute present on the
object
element, and its value is not application/octet-stream
,
then run the following steps:
If the attribute's value is a type that a plugin supports, or the
attribute's value is a type that starts with "image/
" that is
not also an XML MIME type, then let the resource type be the
type specified in that type
attribute.
Jump to the step below labeled handler.
If there is a type
attribute present on the
object
element, then let the tentative type be the type
specified in that type
attribute.
Otherwise, let tentative type be the sniffed type of the resource.
If tentative type is not
application/octet-stream
, then let resource type be
tentative type and jump to the step below labeled
handler.
If applying the URL parser algorithm to the URL of the specified resource (after any redirects) results in a parsed URL whose path component matches a pattern that a plugin supports, then let resource type be the type that that plugin can handle.
For example, a plugin might say that it can handle resources with path components that end with the four character string
".swf
".
It is possible for this step to finish, or for one of the substeps above to jump straight to the next step, with resource type still being unknown. In both cases, the next step will trigger fallback.
Handler: Handle the content as given by the first of the following cases that matches:
If plugins are being sandboxed and the plugin that supports resource type cannot be secured, jump to the step below labeled fallback.
Otherwise, the user agent should use the plugin that supports resource type and pass the content of the resource to that plugin. If the plugin reports an error, then jump to the step below labeled fallback.
image/
"The object
element must be associated with a newly created nested
browsing context, if it does not already have one.
If the URL of the given resource is not about:blank
, the
element's nested browsing context must then be navigated to that resource, with
replacement enabled, and with the object
element's node document's
browsing context as the source browsing context. (The data
attribute of the object
element doesn't
get updated if the browsing context gets further navigated to other locations.)
If the URL of the given resource is about:blank
, then,
instead, the user agent must queue a task to fire a simple event
named load
at the object
element. No load
event is fired at the
about:blank
document itself.
The object
element represents the nested browsing
context.
If the name
attribute is present, the
browsing context name must be set to the value of this attribute; otherwise,
the browsing context name must be set to the empty string.
In certain situations, e.g. if the resource was fetched from an application cache but it is an HTML file
with a manifest
attribute that points to a different
application cache manifest, the navigation of the browsing context will be restarted so
as to load the resource afresh from the network or a different application
cache. Even if the resource is then found to have a different type, it is still used
as part of a nested browsing context: only the navigate algorithm
is restarted, not this object
algorithm.
image/
", and support
for images has not been disabledApply the image sniffing rules to determine the type of the image.
The object
element represents the specified image. The image is
not a nested browsing context.
If the image cannot be rendered, e.g. because it is malformed or in an unsupported format, jump to the step below labeled fallback.
The given resource type is not supported. Jump to the step below labeled fallback.
If the previous step ended with the resource type being unknown, this is the case that is triggered.
The element's contents are not part of what the object
element
represents.
Abort these steps. Once the resource is completely loaded, queue a task to
fire a simple event named load
at the
element.
If the data
attribute is absent but the type
attribute is present, and the user agent can find a
plugin suitable according to the value of the type
attribute, and either plugins aren't being sandboxed or the plugin can be
secured, then that plugin should be used. If these conditions cannot be met, or if the
plugin reports an error, jump to the step below labeled fallback. Otherwise
abort these steps; once the plugin is completely loaded, queue a task to fire
a simple event named load
at the element.
Fallback: The object
element represents the element's
children, ignoring any leading param
element children. This is the element's
fallback content. If the element has an instantiated plugin, then
unload it.
When the algorithm above instantiates a plugin, the user agent
should pass to the plugin used the names and values of all the attributes on the
element, in the order they were added to the element, with the attributes added by the parser
being ordered in source order, followed by a parameter named "PARAM" whose value is null, followed
by all the names and values of parameters given by
param
elements that are children of the object
element, in tree
order. If the plugin supports a scriptable interface, the
HTMLObjectElement
object representing the element should expose that interface. The
object
element represents the plugin. The
plugin is not a nested browsing context.
Plugins are considered sandboxed for the purpose of an
object
element if the sandboxed plugins browsing context flag is set on
the object
element's node document's active sandboxing flag
set.
Due to the algorithm above, the contents of object
elements act as fallback
content, used only when referenced resources can't be shown (e.g. because it returned a 404
error). This allows multiple object
elements to be nested inside each other,
targeting multiple user agents with different capabilities, with the user agent picking the first
one it supports.
When an object
element represents a nested browsing context: if the
object
element's nested browsing context's active document
is not ready for post-load tasks, and when anything is delaying the load event of the object
element's browsing
context's active document, and when the object
element's
browsing context is in the delaying load
events mode, the object
must delay the load event of its
document.
The task source for the tasks mentioned in this section is the DOM manipulation task source.
Whenever the name
attribute is set, if the
object
element has a nested browsing context, its name must be changed to the new value. If the attribute is removed, if the
object
element has a browsing context, the browsing context
name must be set to the empty string.
The usemap
attribute, if present while the
object
element represents an image, can indicate that the object has an associated
image map. The attribute must be ignored if the
object
element doesn't represent an image.
The form
attribute is used to explicitly associate the
object
element with its form owner.
Constraint validation: object
elements are always barred
from constraint validation.
The object
element supports dimension attributes.
The IDL attributes data
, type
and name
each must reflect the respective
content attributes of the same name. The typeMustMatch
IDL attribute must
reflect the typemustmatch
content
attribute. The useMap
IDL attribute must
reflect the usemap
content attribute.
The contentDocument
IDL attribute
must return the Document
object of the active document of the
object
element's nested browsing context, if any and if its
effective script origin is the same origin as the effective script
origin specified by the incumbent settings object, or null otherwise.
The contentWindow
IDL attribute must
return the WindowProxy
object of the object
element's nested
browsing context, if it has one; otherwise, it must return null.
The willValidate
, validity
, and validationMessage
attributes, and the checkValidity()
, reportValidity()
, and setCustomValidity()
methods, are part of the
constraint validation API. The form
IDL attribute
is part of the element's forms API.
All object
elements have a legacy caller
operation. If the object
element has an instantiated plugin that
supports a scriptable interface that defines a legacy caller operation, then that must be the
behaviour of the object's legacy caller operation. Otherwise, the object's legacy caller operation
must be to throw a NotSupportedError
exception.
In the following example, a Java applet is embedded in a page using the object
element. (Generally speaking, it is better to avoid using applets like these and instead use
native JavaScript and HTML to provide the functionality, since that way the application will work
on all Web browsers without requiring a third-party plugin. Many devices, especially embedded
devices, do not support third-party technologies like Java.)
<figure> <object type="application/x-java-applet"> <param name="code" value="MyJavaClass"> <p>You do not have Java available, or it is disabled.</p> </object> <figcaption>My Java Clock</figcaption> </figure>
In this example, an HTML page is embedded in another using the object
element.
<figure> <object data="clock.html"></object> <figcaption>My HTML Clock</figcaption> </figure>
The following example shows how a plugin can be used in HTML (in this case the Flash plugin,
to show a video file). Fallback is provided for users who do not have Flash enabled, in this case
using the video
element to show the video for those using user agents that support
video
, and finally providing a link to the video for those who have neither Flash
nor a video
-capable browser.
<p>Look at my video: <object type="application/x-shockwave-flash"> <param name=movie value="http://video.example.com/library/watch.swf"> <param name=allowfullscreen value=true> <param name=flashvars value="http://video.example.com/vids/315981"> <video controls src="http://video.example.com/vids/315981"> <a href="http://video.example.com/vids/315981">View video</a>. </video> </object> </p>
param
elementobject
element, before any flow content.name
— Name of parametervalue
— Value of parameterinterface HTMLParamElement : HTMLElement { attribute DOMString name; attribute DOMString value; };
The param
element defines parameters for plugins invoked by object
elements. It does not represent anything on its own.
The name
attribute gives the name of the
parameter.
The value
attribute gives the value of the
parameter.
Both attributes must be present. They may have any value.
If both attributes are present, and if the parent element of the param
is an
object
element, then the element defines a parameter with the given name-value pair.
If either the name or value of a parameter defined
by a param
element that is the child of an object
element that
represents an instantiated plugin changes, and if that
plugin is communicating with the user agent using an API that features the ability to
update the plugin when the name or value of a parameter so changes, then the user agent must
appropriately exercise that ability to notify the plugin of the change.
The IDL attributes name
and value
must both reflect the respective
content attributes of the same name.
The following example shows how the param
element can be used to pass a parameter
to a plugin, in this case the O3D plugin.
<!DOCTYPE HTML> <html lang="en"> <head> <title>O3D Utah Teapot</title> </head> <body> <p> <object type="application/vnd.o3d.auto"> <param name="o3d_features" value="FloatingPointTextures"> <img src="o3d-teapot.png" title="3D Utah Teapot illustration rendered using O3D." alt="When O3D renders the Utah Teapot, it appears as a squat teapot with a shiny metallic finish on which the surroundings are reflected, with a faint shadow caused by the lighting."> <p>To see the teapot actually rendered by O3D on your computer, please download and install the <a href="http://code.google.com/apis/o3d/docs/gettingstarted.html#install">O3D plugin</a>.</p> </object> <script src="o3d-teapot.js"></script> </p> </body> </html>
video
elementcontrols
attribute: Interactive content.src
attribute:
zero or more track
elements, then
transparent, but with no media element descendants.src
attribute: zero or more source
elements, then
zero or more track
elements, then
transparent, but with no media element descendants.src
— Address of the resourcecrossorigin
— How the element handles crossorigin requestsposter
— Poster frame to show prior to video playbackpreload
— Hints how much buffering the media resource will likely needautoplay
— Hint that the media resource can be started automatically when the page is loadedmediagroup
— Groups media elements together with an implicit MediaController
loop
— Whether to loop the media resourcemuted
— Whether to mute the media resource by defaultcontrols
— Show user agent controlswidth
— Horizontal dimensionheight
— Vertical dimensioninterface HTMLVideoElement : HTMLMediaElement { attribute unsigned long width; attribute unsigned long height; readonly attribute unsigned long videoWidth; readonly attribute unsigned long videoHeight; attribute DOMString poster; };
A video
element is used for playing videos or movies, and audio files with
captions.
Content may be provided inside the video
element. User agents
should not show this content to the user; it is intended for older Web browsers which do
not support video
, so that legacy video plugins can be tried, or to show text to the
users of these older browsers informing them of how to access the video contents.
In particular, this content is not intended to address accessibility concerns. To
make video content accessible to the partially sighted, the blind, the hard-of-hearing, the deaf,
and those with other physical or cognitive disabilities, a variety of features are available.
Captions can be provided, either embedded in the video stream or as external files using the
track
element. Sign-language tracks can be provided, again either embedded in the
video stream or by synchronising multiple video
elements using the mediagroup
attribute or a MediaController
object. Audio descriptions can be provided, either as a separate track embedded in the video
stream, or a separate audio track in an audio
element slaved to the same controller as the video
element(s), or in text
form using a WebVTT file referenced using the track
element and
synthesized into speech by the user agent. WebVTT can also be used to provide chapter titles. For
users who would rather not use a media element at all, transcripts or other textual alternatives
can be provided by simply linking to them in the prose near the video
element. [WEBVTT]
The video
element is a media element whose media data is
ostensibly video data, possibly with associated audio data.
The src
, preload
,
autoplay
, mediagroup
, loop
, muted
, and controls
attributes are the attributes common to all media
elements.
The poster
attribute gives the address of an
image file that the user agent can show while no video data is available. The attribute, if
present, must contain a valid non-empty URL potentially surrounded by spaces.
If the specified resource is to be used, then, when the element is created or when the poster
attribute is set, changed, or removed, the user agent must
run the following steps to determine the element's poster frame (regardless of the
value of the element's show poster flag):
If there is an existing instance of this algorithm running for this video
element, abort that instance of this algorithm without changing the poster
frame.
If the poster
attribute's value is the empty string
or if the attribute is absent, then there is no poster frame; abort these
steps.
Resolve the poster
attribute's value relative to the element. If this fails,
then there is no poster frame; abort these steps.
Fetch the resulting absolute URL, from the element's node document's origin. This must delay the load event of the element's node document.
If an image is thus obtained, the poster frame is that image. Otherwise, there is no poster frame.
The image given by the poster
attribute,
the poster frame, is intended to be a representative frame of the
video (typically one of the first non-blank frames) that gives the user an idea of what the video
is like.
A video
element represents what is given for the first matching condition in the
list below:
readyState
attribute is either HAVE_NOTHING
, or HAVE_METADATA
but no video data has yet been obtained at
all, or the element's readyState
attribute is any
subsequent value but the media resource does not have a video channel)video
element represents its poster frame, if any,
or else transparent black with no intrinsic dimensions.video
element is paused, the current playback position is the first frame of video,
and the element's show poster flag is setvideo
element represents its poster frame, if any,
or else the first frame of the video.video
element is paused, and the
frame of video corresponding to the current playback
position is not available (e.g. because the video is seeking or buffering)video
element is neither potentially playing nor paused (e.g. when seeking or stalled)video
element represents the last frame of the video to have
been rendered.video
element is pausedvideo
element represents the frame of video corresponding to
the current playback position.video
element has a video channel and is potentially
playing)video
element represents the frame of video at the continuously
increasing "current" position. When the
current playback position changes such that the last frame rendered is no longer the
frame corresponding to the current playback position in the video, the new frame
must be rendered.Frames of video must be obtained from the video track that was selected when the event loop last reached step 1.
Which frame in a video stream corresponds to a particular playback position is defined by the video stream's format.
The video
element also represents any text track cues whose text track cue active flag is set and whose
text track is in the showing mode, and any
audio from the media resource, at the current playback position.
Any audio associated with the media resource must, if played, be played synchronised with the current playback position, at the element's effective media volume. The user agent must play the audio from audio tracks that were enabled when the event loop last reached step 1.
In addition to the above, the user agent may provide messages to the user (such as "buffering", "no video loaded", "error", or more detailed information) by overlaying text or icons on the video or other areas of the element's playback area, or in another appropriate manner.
User agents that cannot render the video may instead make the element represent a link to an external video playback utility or to the video data itself.
When a video
element's media resource has a video channel, the
element provides a paint source whose width is the media resource's
intrinsic width, whose height is the
media resource's intrinsic
height, and whose appearance is the frame of video corresponding to the current playback position, if that is available, or else
(e.g. when the video is seeking or buffering) its previous appearance, if any, or else (e.g.
because the video is still loading the first frame) blackness.
videoWidth
videoHeight
These attributes return the intrinsic dimensions of the video, or zero if the dimensions are not known.
The intrinsic width and intrinsic height of the media resource are the dimensions of the resource in CSS pixels after taking into account the resource's dimensions, aspect ratio, clean aperture, resolution, and so forth, as defined for the format used by the resource. If an anamorphic format does not define how to apply the aspect ratio to the video data's dimensions to obtain the "correct" dimensions, then the user agent must apply the ratio by increasing one dimension and leaving the other unchanged.
The videoWidth
IDL attribute must return
the intrinsic width of the video in CSS pixels.
The videoHeight
IDL attribute must return
the intrinsic height of the video in CSS
pixels. If the element's readyState
attribute is HAVE_NOTHING
, then the attributes must return 0.
Whenever the intrinsic width
or intrinsic height of the video changes
(including, for example, because the selected video
track was changed), if the element's readyState
attribute is not HAVE_NOTHING
, the user agent must
queue a task to fire a simple event named resize
at the media element.
The video
element supports dimension attributes.
In the absence of style rules to the contrary, video content should be rendered inside the element's playback area such that the video content is shown centered in the playback area at the largest possible size that fits completely within it, with the video content's aspect ratio being preserved. Thus, if the aspect ratio of the playback area does not match the aspect ratio of the video, the video will be shown letterboxed or pillarboxed. Areas of the element's playback area that do not contain the video represent nothing.
In user agents that implement CSS, the above requirement can be implemented by using the style rule suggested in the rendering section.
The intrinsic width of a video
element's playback area is the intrinsic width of
the poster frame, if that is available and the element currently
represents its poster frame; otherwise, it is the intrinsic width of the video resource, if that is
available; otherwise the intrinsic width is missing.
The intrinsic height of a video
element's playback area is the intrinsic height of
the poster frame, if that is available and the element currently
represents its poster frame; otherwise it is the intrinsic height of the video resource, if that is
available; otherwise the intrinsic height is missing.
The default object size is a width of 300 CSS pixels and a height of 150 CSS pixels. [CSSIMAGES]
User agents should provide controls to enable or disable the display of closed captions, audio description tracks, and other additional data associated with the video stream, though such features should, again, not interfere with the page's normal rendering.
User agents may allow users to view the video content in manners more suitable to the user
(e.g. full-screen or in an independent resizable window). As for the other user interface
features, controls to enable this should not interfere with the page's normal rendering unless the
user agent is exposing a user interface.
In such an independent context, however, user agents may make full user interfaces visible, with,
e.g., play, pause, seeking, and volume controls, even if the controls
attribute is absent.
User agents may allow video playback to affect system features that could interfere with the user's experience; for example, user agents could disable screensavers while video playback is in progress.
The poster
IDL attribute must
reflect the poster
content attribute.
This example shows how to detect when a video has failed to play correctly:
<script> function failed(e) { // video playback failed - show a message saying why switch (e.target.error.code) { case e.target.error.MEDIA_ERR_ABORTED: alert('You aborted the video playback.'); break; case e.target.error.MEDIA_ERR_NETWORK: alert('A network error caused the video download to fail part-way.'); break; case e.target.error.MEDIA_ERR_DECODE: alert('The video playback was aborted due to a corruption problem or because the video used features your browser did not support.'); break; case e.target.error.MEDIA_ERR_SRC_NOT_SUPPORTED: alert('The video could not be loaded, either because the server or network failed or because the format is not supported.'); break; default: alert('An unknown error occurred.'); break; } } </script> <p><video src="tgif.vid" autoplay controls onerror="failed(event)"></video></p> <p><a href="tgif.vid">Download the video file</a>.</p>
audio
elementcontrols
attribute: Interactive content.controls
attribute: Palpable content.src
attribute:
zero or more track
elements, then
transparent, but with no media element descendants.src
attribute: zero or more source
elements, then
zero or more track
elements, then
transparent, but with no media element descendants.src
— Address of the resourcecrossorigin
— How the element handles crossorigin requestspreload
— Hints how much buffering the media resource will likely needautoplay
— Hint that the media resource can be started automatically when the page is loadedmediagroup
— Groups media elements together with an implicit MediaController
loop
— Whether to loop the media resourcemuted
— Whether to mute the media resource by defaultcontrols
— Show user agent controls[NamedConstructor=Audio(optional DOMString src)] interface HTMLAudioElement : HTMLMediaElement {};
An audio
element represents a sound or audio stream.
Content may be provided inside the audio
element. User agents
should not show this content to the user; it is intended for older Web browsers which do
not support audio
, so that legacy audio plugins can be tried, or to show text to the
users of these older browsers informing them of how to access the audio contents.
In particular, this content is not intended to address accessibility concerns. To
make audio content accessible to the deaf or to those with other physical or cognitive
disabilities, a variety of features are available. If captions or a sign language video are
available, the video
element can be used instead of the audio
element to
play the audio, allowing users to enable the visual alternatives. Chapter titles can be provided
to aid navigation, using the track
element and a WebVTT file. And,
naturally, transcripts or other textual alternatives can be provided by simply linking to them in
the prose near the audio
element. [WEBVTT]
The audio
element is a media element whose media data is
ostensibly audio data.
The src
, preload
,
autoplay
, mediagroup
, loop
, muted
, and controls
attributes are the attributes common to all media
elements.
When an audio
element is potentially playing, it must have its audio
data played synchronised with the current playback position, at the element's
effective media volume. The user agent must play the audio from audio tracks that
were enabled when the event loop last reached step 1.
When an audio
element is not potentially playing, audio must not play
for the element.
Audio
( [ url ] )Returns a new audio
element, with the src
attribute set to the value passed in the argument, if applicable.
A constructor is provided for creating HTMLAudioElement
objects (in addition to
the factory methods from DOM such as createElement()
): Audio(src)
. When invoked as a
constructor, it must return a new HTMLAudioElement
object (a new audio
element). The element must be created with its preload
attribute set to the literal value "auto
". If the
src argument is present, the object created must be created with its src
content attribute set to the provided value (this will cause the user agent to invoke the object's
resource selection algorithm before returning).
The element's node document must be the active document of the browsing
context of the Window
object on which the interface object of the invoked
constructor is found.
source
elementtrack
elements.src
— Address of the resourcetype
— Type of embedded resourceinterface HTMLSourceElement : HTMLElement { attribute DOMString src; attribute DOMString type; };
The source
element allows authors to specify multiple alternative media resources for media
elements. It does not represent anything on its own.
The src
attribute gives the address of the
media resource. The value must be a valid non-empty URL potentially surrounded
by spaces. This attribute must be present.
Dynamically modifying a source
element and its attribute when the
element is already inserted in a video
or audio
element will have no
effect. To change what is playing, just use the src
attribute
on the media element directly, possibly making use of the canPlayType()
method to pick from amongst available
resources. Generally, manipulating source
elements manually after the document has
been parsed is an unnecessarily complicated approach.
The type
attribute gives the type of the
media resource, to help the user agent determine if it can play this media
resource before fetching it. If specified, its value must be a valid MIME
type. The codecs
parameter, which certain MIME types define, might be
necessary to specify exactly how the resource is encoded. [RFC6381]
The following list shows some examples of how to use the codecs=
MIME
parameter in the type
attribute.
<source src='video.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
<source src='video.mp4' type='video/mp4; codecs="avc1.58A01E, mp4a.40.2"'>
<source src='video.mp4' type='video/mp4; codecs="avc1.4D401E, mp4a.40.2"'>
<source src='video.mp4' type='video/mp4; codecs="avc1.64001E, mp4a.40.2"'>
<source src='video.mp4' type='video/mp4; codecs="mp4v.20.8, mp4a.40.2"'>
<source src='video.mp4' type='video/mp4; codecs="mp4v.20.240, mp4a.40.2"'>
<source src='video.3gp' type='video/3gpp; codecs="mp4v.20.8, samr"'>
<source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'>
<source src='video.ogv' type='video/ogg; codecs="theora, speex"'>
<source src='audio.ogg' type='audio/ogg; codecs=vorbis'>
<source src='audio.spx' type='audio/ogg; codecs=speex'>
<source src='audio.oga' type='audio/ogg; codecs=flac'>
<source src='video.ogv' type='video/ogg; codecs="dirac, vorbis"'>
If a source
element is inserted as a child of a media element that
has no src
attribute and whose networkState
has the value NETWORK_EMPTY
, the user agent must invoke the media
element's resource selection
algorithm.
The IDL attributes src
and type
must reflect the respective content
attributes of the same name.
If the author isn't sure if user agents will all be able to render the media resources
provided, the author can listen to the error
event on the last
source
element and trigger fallback behaviour:
<script> function fallback(video) { // replace <video> with its contents while (video.hasChildNodes()) { if (video.firstChild instanceof HTMLSourceElement) video.removeChild(video.firstChild); else video.parentNode.insertBefore(video.firstChild, video); } video.parentNode.removeChild(video); } </script> <video controls autoplay> <source src='video.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'> <source src='video.ogv' type='video/ogg; codecs="theora, vorbis"' onerror="fallback(parentNode)"> ... </video>
track
elementkind
— The type of text tracksrc
— Address of the resourcesrclang
— Language of the text tracklabel
— User-visible labeldefault
— Enable the track if no other text track is more suitableinterface HTMLTrackElement : HTMLElement { attribute DOMString kind; attribute DOMString src; attribute DOMString srclang; attribute DOMString label; attribute boolean default; const unsigned short NONE = 0; const unsigned short LOADING = 1; const unsigned short LOADED = 2; const unsigned short ERROR = 3; readonly attribute unsigned short readyState; readonly attribute TextTrack track; };
The track
element allows authors to specify explicit external timed text tracks for media elements. It
does not represent anything on its own.
The kind
attribute is an enumerated
attribute. The following table lists the keywords defined for this attribute. The keyword
given in the first cell of each row maps to the state given in the second cell.
Keyword | State | Brief description |
---|---|---|
subtitles
| Subtitles | Transcription or translation of the dialogue, suitable for when the sound is available but not understood (e.g. because the user does not understand the language of the media resource's audio track). Overlaid on the video. |
captions
| Captions | Transcription or translation of the dialogue, sound effects, relevant musical cues, and other relevant audio information, suitable for when sound is unavailable or not clearly audible (e.g. because it is muted, drowned-out by ambient noise, or because the user is deaf). Overlaid on the video; labeled as appropriate for the hard-of-hearing. |
descriptions
| Descriptions | Textual descriptions of the video component of the media resource, intended for audio synthesis when the visual component is obscured, unavailable, or not usable (e.g. because the user is interacting with the application without a screen while driving, or because the user is blind). Synthesized as audio. |
chapters
| Chapters | Chapter titles, intended to be used for navigating the media resource. Displayed as an interactive (potentially nested) list in the user agent's interface. |
metadata
| Metadata | Tracks intended for use from script. Not displayed by the user agent. |
The attribute may be omitted. The missing value default is the subtitles state.
The src
attribute gives the address of the text
track data. The value must be a valid non-empty URL potentially surrounded by spaces.
This attribute must be present.
If the element has a src
attribute whose value is not the
empty string and whose value, when the attribute was set, could be successfully resolved relative to the element, then the element's track
URL is the resulting absolute URL. Otherwise, the element's track
URL is the empty string.
If the element's track URL identifies a WebVTT resource, and the element's kind
attribute is not in the metadata state, then the WebVTT file must be a
WebVTT file using cue text. [WEBVTT]
Furthermore, if the element's track URL identifies a WebVTT resource, and the
element's kind
attribute is in the chapters state, then the WebVTT file must be both a
WebVTT file using chapter title text and a WebVTT file using only nested
cues. [WEBVTT]
The srclang
attribute gives the language of
the text track data. The value must be a valid BCP 47 language tag. This attribute must be present
if the element's kind
attribute is in the subtitles state. [BCP47]
If the element has a srclang
attribute whose value is
not the empty string, then the element's track language is the value of the attribute.
Otherwise, the element has no track language.
The label
attribute gives a user-readable
title for the track. This title is used by user agents when listing subtitle, caption, and audio description tracks in their user interface.
The value of the label
attribute, if the attribute is
present, must not be the empty string. Furthermore, there must not be two track
element children of the same media element whose kind
attributes are in the same state, whose srclang
attributes are both missing or have values that
represent the same language, and whose label
attributes are
again both missing or both have the same value.
If the element has a label
attribute whose value is not
the empty string, then the element's track label is the value of the attribute.
Otherwise, the element's track label is an empty string.
The default
attribute is a boolean
attribute, which, if specified, indicates that the track is to be enabled if the user's
preferences do not indicate that another track would be more appropriate.
Each media element must have no more than one track
element child
whose kind
attribute is in the subtitles or captions state and whose default
attribute is specified.
Each media element must have no more than one track
element child
whose kind
attribute is in the description state and whose default
attribute is specified.
Each media element must have no more than one track
element child
whose kind
attribute is in the chapters state and whose default
attribute is specified.
There is no limit on the number of track
elements whose kind
attribute is in the metadata state and whose default
attribute is specified.
readyState
Returns the text track readiness state, represented by a number from the following list:
NONE
(0)The text track not loaded state.
LOADING
(1)The text track loading state.
LOADED
(2)The text track loaded state.
ERROR
(3)The text track failed to load state.
track
Returns the TextTrack
object corresponding to the text track of the track
element.
The readyState
attribute must return the
numeric value corresponding to the text track readiness state of the
track
element's text track, as defined by the following list:
NONE
(numeric value 0)LOADING
(numeric value 1)LOADED
(numeric value 2)ERROR
(numeric value 3)The track
IDL attribute must, on getting,
return the track
element's text track's corresponding
TextTrack
object.
The src
, srclang
, label
, and default
IDL attributes must reflect the
respective content attributes of the same name. The kind
IDL attribute must reflect the content
attribute of the same name, limited to only known values.
This video has subtitles in several languages:
<video src="brave.webm"> <track kind=subtitles src=brave.en.vtt srclang=en label="English"> <track kind=captions src=brave.en.hoh.vtt srclang=en label="English for the Hard of Hearing"> <track kind=subtitles src=brave.fr.vtt srclang=fr lang=fr label="Français"> <track kind=subtitles src=brave.de.vtt srclang=de lang=de label="Deutsch"> </video>
(The lang
attributes on the last two describe the language of
the label
attribute, not the language of the subtitles
themselves. The language of the subtitles is given by the srclang
attribute.)
Media elements (audio
and video
, in
this specification) implement the following interface:
enum CanPlayTypeResult { "" /* empty string */, "maybe", "probably" }; typedef (MediaStream or MediaSource or Blob) MediaProvider; interface HTMLMediaElement : HTMLElement { // error state readonly attribute MediaError? error; // network state attribute DOMString src; attribute MediaProvider? srcObject; readonly attribute DOMString currentSrc; attribute DOMString? crossOrigin; const unsigned short NETWORK_EMPTY = 0; const unsigned short NETWORK_IDLE = 1; const unsigned short NETWORK_LOADING = 2; const unsigned short NETWORK_NO_SOURCE = 3; readonly attribute unsigned short networkState; attribute DOMString preload; readonly attribute TimeRanges buffered; void load(); CanPlayTypeResult canPlayType(DOMString type); // ready state const unsigned short HAVE_NOTHING = 0; const unsigned short HAVE_METADATA = 1; const unsigned short HAVE_CURRENT_DATA = 2; const unsigned short HAVE_FUTURE_DATA = 3; const unsigned short HAVE_ENOUGH_DATA = 4; readonly attribute unsigned short readyState; readonly attribute boolean seeking; // playback state attribute double currentTime; void fastSeek(double time); readonly attribute unrestricted double duration; Date getStartDate(); readonly attribute boolean paused; attribute double defaultPlaybackRate; attribute double playbackRate; readonly attribute TimeRanges played; readonly attribute TimeRanges seekable; readonly attribute boolean ended; attribute boolean autoplay; attribute boolean loop; void play(); void pause(); // media controller attribute DOMString mediaGroup; attribute MediaController? controller; // controls attribute boolean controls; attribute double volume; attribute boolean muted; attribute boolean defaultMuted; // tracks [SameObject] readonly attribute AudioTrackList audioTracks; [SameObject] readonly attribute VideoTrackList videoTracks; [SameObject] readonly attribute TextTrackList textTracks; TextTrack addTextTrack(TextTrackKind kind, optional DOMString label = "", optional DOMString language = ""); };
The media element attributes, src
, crossorigin
, preload
, autoplay
,
mediagroup
, loop
,
muted
, and controls
, apply to all media
elements. They are defined in this section.
Media elements are used to present audio data, or video and audio data, to the user. This is referred to as media data in this section, since this section applies equally to media elements for audio or for video. The term media resource is used to refer to the complete set of media data, e.g. the complete video file, or complete audio file.
A media resource can have multiple audio and video tracks. For the purposes of a
media element, the video data of the media resource is only that of the
currently selected track (if any) as given by the element's videoTracks
attribute when the event loop last
reached step 1, and the audio data of the media resource is the result of mixing all
the currently enabled tracks (if any) given by the element's audioTracks
attribute when the event loop last
reached step 1.
Both audio
and video
elements can be used for both audio
and video. The main difference between the two is simply that the audio
element has
no playback area for visual content (such as video or captions), whereas the video
element does.
Except where otherwise explicitly specified, the task source for all the tasks queued in this section and its subsections is the media element event task source of the media element in question.
error
Returns a MediaError
object representing the current error state of the
element.
Returns null if there is no error.
All media elements have an associated error status, which
records the last error the element encountered since its resource selection algorithm was last invoked. The
error
attribute, on getting, must return the
MediaError
object created for this last error, or null if there has not been an
error.
interface MediaError { const unsigned short MEDIA_ERR_ABORTED = 1; const unsigned short MEDIA_ERR_NETWORK = 2; const unsigned short MEDIA_ERR_DECODE = 3; const unsigned short MEDIA_ERR_SRC_NOT_SUPPORTED = 4; readonly attribute unsigned short code; };
error
. code
Returns the current error's error code, from the list below.
The code
attribute of a
MediaError
object must return the code for the error, which must be one of the
following:
MEDIA_ERR_ABORTED
(numeric value 1)MEDIA_ERR_NETWORK
(numeric value 2)MEDIA_ERR_DECODE
(numeric value 3)MEDIA_ERR_SRC_NOT_SUPPORTED
(numeric value 4)src
attribute or assigned media provider object was not suitable.The src
content attribute on media elements gives the address of the media resource (video, audio) to show. The
attribute, if present, must contain a valid non-empty URL potentially surrounded by
spaces.
If the itemprop
attribute is specified on the media
element, then the src
attribute must also be
specified.
The crossorigin
content attribute on
media elements is a CORS settings attribute.
If a media element is created with a
src
attribute, the user agent must immediately invoke the
media element's resource selection
algorithm.
If a src
attribute of a media element is set
or changed, the user agent must invoke the media element's media element load
algorithm. (Removing the src
attribute does
not do this, even if there are source
elements present.)
The src
IDL attribute on media elements must reflect the content attribute of the same
name.
The crossOrigin
IDL attribute must
reflect the crossorigin
content attribute.
A media provider object is an object that can represent a media resource,
separate from a URL. MediaStream
objects, MediaSource
objects, Blob
objects, and File
objects are all media provider objects.
Each media element can have an assigned media provider object, which is a media provider object. When a media element is created, it has no assigned media provider object.
srcObject
[ = source ]Allows the media element to be assigned a media provider object.
currentSrc
Returns the address of the current media resource, if any.
Returns the empty string when there is no media resource, or it doesn't have an address.
The currentSrc
IDL attribute must initially be set to
the empty string. Its value is changed by the resource
selection algorithm defined below.
The srcObject
IDL attribute, on getting,
must return the element's assigned media provider object, if any, or null otherwise.
On setting, it must set the element's assigned media provider object to the new
value, and then invoke the element's media element load algorithm.
There are three ways to specify a media resource: the srcObject
IDL attribute, the src
content attribute, and source
elements. The IDL
attribute takes priority, followed by the content attribute, followed by the elements.
A media resource can be described in terms of its type, specifically a
MIME type, in some cases with a codecs
parameter. (Whether the
codecs
parameter is allowed or not depends on the MIME type.) [RFC6381]
Types are usually somewhat incomplete descriptions; for example "video/mpeg
" doesn't say anything except what the container type is, and even a
type like "video/mp4; codecs="avc1.42E01E, mp4a.40.2"
" doesn't
include information like the actual bitrate (only the maximum bitrate). Thus, given a type, a user
agent can often only know whether it might be able to play media of that type (with
varying levels of confidence), or whether it definitely cannot play media of that
type.
A type that the user agent knows it cannot render is one that describes a resource that the user agent definitely does not support, for example because it doesn't recognise the container type, or it doesn't support the listed codecs.
The MIME type "application/octet-stream
" with no parameters is never
a type that the user agent knows it cannot render. User agents must treat that type
as equivalent to the lack of any explicit Content-Type metadata
when it is used to label a potential media resource.
Only the MIME type "application/octet-stream
" with no
parameters is special-cased here; if any parameter appears with it, it will be treated just like
any other MIME type. This is a deviation from the rule that unknown MIME type parameters should be ignored.
canPlayType
(type)Returns the empty string (a negative response), "maybe", or "probably" based on how confident the user agent is that it can play media resources of the given type.
The canPlayType(type)
method must return the
empty string if type is a type that the user agent knows it cannot
render or is the type "application/octet-stream
"; it must return "probably
" if the user agent is confident
that the type represents a media resource that it can render if used in with this
audio
or video
element; and it must return "maybe
" otherwise. Implementors are encouraged
to return "maybe
" unless the type can be
confidently established as being supported or not. Generally, a user agent should never return
"probably
" for a type that allows the codecs
parameter if that parameter is not present.
This script tests to see if the user agent supports a (fictional) new format to dynamically
decide whether to use a video
element or a plugin:
<section id="video"> <p><a href="playing-cats.nfv">Download video</a></p> </section> <script> var videoSection = document.getElementById('video'); var videoElement = document.createElement('video'); var support = videoElement.canPlayType('video/x-new-fictional-format;codecs="kittens,bunnies"'); if (support != "probably" && "New Fictional Video Plugin" in navigator.plugins) { // not confident of browser support // but we have a plugin // so use plugin instead videoElement = document.createElement("embed"); } else if (support == "") { // no support from browser and no plugin // do nothing videoElement = null; } if (videoElement) { while (videoSection.hasChildNodes()) videoSection.removeChild(videoSection.firstChild); videoElement.setAttribute("src", "playing-cats.nfv"); videoSection.appendChild(videoElement); } </script>
The type
attribute of the
source
element allows the user agent to avoid downloading resources that use formats
it cannot render.
networkState
Returns the current state of network activity for the element, from the codes in the list below.
As media elements interact with the network, their current
network activity is represented by the networkState
attribute. On getting, it must
return the current network state of the element, which must be one of the following values:
NETWORK_EMPTY
(numeric value 0)NETWORK_IDLE
(numeric value 1)NETWORK_LOADING
(numeric value 2)NETWORK_NO_SOURCE
(numeric value 3)The resource selection algorithm defined
below describes exactly when the networkState
attribute changes value and what events fire to indicate changes in this state.
load
()Causes the element to reset and start selecting and loading a new media resource from scratch.
All media elements have an autoplaying flag, which must begin in the true state, and a delaying-the-load-event flag, which must begin in the false state. While the delaying-the-load-event flag is true, the element must delay the load event of its document.
When the load()
method on a media
element is invoked, the user agent must run the media element load
algorithm.
The media element load algorithm consists of the following steps.
Abort any already-running instance of the resource selection algorithm for this element.
If there are any tasks from the media element's media element event task source in one of the task queues, then remove those tasks.
Basically, pending events and callbacks for the media element are discarded when the media element starts loading a new resource.
If the media element's networkState
is set to NETWORK_LOADING
or NETWORK_IDLE
, queue a task to fire a
simple event named abort
at the media
element.
If the media element's networkState
is not set to NETWORK_EMPTY
, then run these
substeps:
Queue a task to fire a simple event named emptied
at the media element.
If a fetching process is in progress for the media element, the user agent should stop it.
If readyState
is not set to HAVE_NOTHING
, then set it to that state.
If the paused
attribute is false, then set it to
true.
If seeking
is true, set it to false.
Set the current playback position to 0.
Set the official playback position to 0.
If this changed the official playback position, then queue a task
to fire a simple event named timeupdate
at the media element.
Set the timeline offset to Not-a-Number (NaN).
Update the duration
attribute to Not-a-Number
(NaN).
The user agent will not fire a durationchange
event for this particular change of
the duration.
Set the playbackRate
attribute to the value of
the defaultPlaybackRate
attribute.
Set the error
attribute to null and the
autoplaying flag to true.
Invoke the media element's resource selection algorithm.
Playback of any previously playing media resource for this element stops.
The resource selection algorithm for a media element is as follows. This algorithm is always invoked as part of a task, but one of the first steps in the algorithm is to return and continue running the remaining steps in parallel. In addition, this algorithm interacts closely with the event loop mechanism; in particular, it has synchronous sections (which are triggered as part of the event loop algorithm). Steps in such sections are marked with ⌛.
Set the element's networkState
attribute to
the NETWORK_NO_SOURCE
value.
Set the element's show poster flag to true.
Set the media element's delaying-the-load-event flag to true (this delays the load event).
Await a stable state, allowing the task that invoked this algorithm to continue. The synchronous section consists of all the remaining steps of this algorithm until the algorithm says the synchronous section has ended. (Steps in synchronous sections are marked with ⌛.)
⌛ If the media element's blocked-on-parser flag is false, then populate the list of pending text tracks.
⌛ If the media element has an assigned media provider object, then let mode be object.
⌛ Otherwise, if the media element has no assigned media provider
object but has a src
attribute, then let mode be attribute.
⌛ Otherwise, if the media element does not have an assigned media provider
object and does not have a src
attribute, but does have a source
element child, then
let mode be children and let candidate
be the first such source
element child in tree order.
⌛ Otherwise the media element has no assigned media provider
object and has neither a src
attribute nor a source
element child: set the
networkState
to NETWORK_EMPTY
, and abort these steps; the
synchronous section ends.
⌛ Set the media element's networkState
to NETWORK_LOADING
.
⌛ Queue a task to fire a simple event named loadstart
at the media element.
Run the appropriate steps from the following list:
⌛ Set the currentSrc
attribute to
the empty string.
End the synchronous section, continuing the remaining steps in parallel.
Run the resource fetch algorithm with the assigned media provider object. If that algorithm returns without aborting this one, then the load failed.
Failed with media provider: Reaching this step indicates that the media resource failed to load. Queue a task to run the dedicated media source failure steps.
Wait for the task queued by the previous step to have executed.
Abort these steps. The element won't attempt to load another resource until this algorithm is triggered again.
⌛ If the src
attribute's value is the empty string, then end the synchronous section, and jump
down to the failed with attribute step below.
⌛ Let absolute URL be the absolute URL that
would have resulted from resolving the URL
specified by the src
attribute's value relative to the
media element when the src
attribute was last
changed.
⌛ If absolute URL was obtained successfully, set the currentSrc
attribute to absolute
URL.
End the synchronous section, continuing the remaining steps in parallel.
If absolute URL was obtained successfully, run the resource fetch algorithm with absolute URL. If that algorithm returns without aborting this one, then the load failed.
Failed with attribute: Reaching this step indicates that the media resource failed to load or that the given URL could not be resolved. Queue a task to run the dedicated media source failure steps.
Wait for the task queued by the previous step to have executed.
Abort these steps. The element won't attempt to load another resource until this algorithm is triggered again.
⌛ Let pointer be a position defined by two adjacent nodes in the media element's child list, treating the start of the list (before the first child in the list, if any) and end of the list (after the last child in the list, if any) as nodes in their own right. One node is the node before pointer, and the other node is the node after pointer. Initially, let pointer be the position between the candidate node and the next node, if there are any, or the end of the list, if it is the last node.
As nodes are inserted and removed into the media element, pointer must be updated as follows:
Other changes don't affect pointer.
⌛ Process candidate: If candidate does not have a
src
attribute, or if its src
attribute's value is the empty string, then end the
synchronous section, and jump down to the failed with elements step
below.
⌛ Let absolute URL be the absolute URL that
would have resulted from resolving the URL
specified by candidate's src
attribute's value relative to the candidate when the src
attribute was last changed.
⌛ If absolute URL was not obtained successfully, then end the synchronous section, and jump down to the failed with elements step below.
⌛ If candidate has a type
attribute whose value, when parsed as a MIME
type (including any codecs described by the codecs
parameter, for
types that define that parameter), represents a type that the user agent knows it cannot
render, then end the synchronous section, and jump down to the failed with elements step below.
⌛ Set the currentSrc
attribute to absolute URL.
End the synchronous section, continuing the remaining steps in parallel.
Run the resource fetch algorithm with absolute URL. If that algorithm returns without aborting this one, then the load failed.
Failed with elements: Queue a task to fire a simple
event named error
at the candidate element.
Await a stable state. The synchronous section consists of all the remaining steps of this algorithm until the algorithm says the synchronous section has ended. (Steps in synchronous sections are marked with ⌛.)
⌛ Forget the media element's media-resource-specific tracks.
⌛ Find next candidate: Let candidate be null.
⌛ Search loop: If the node after pointer is the end of the list, then jump to the waiting step below.
⌛ If the node after pointer is a source
element,
let candidate be that element.
⌛ Advance pointer so that the node before pointer is now the node that was after pointer, and the node after pointer is the node after the node that used to be after pointer, if any.
⌛ If candidate is null, jump back to the search loop step. Otherwise, jump back to the process candidate step.
⌛ Waiting: Set the element's networkState
attribute to the NETWORK_NO_SOURCE
value.
⌛ Set the element's show poster flag to true.
⌛ Queue a task to set the element's delaying-the-load-event flag to false. This stops delaying the load event.
End the synchronous section, continuing the remaining steps in parallel.
Wait until the node after pointer is a node other than the end of the list. (This step might wait forever.)
Await a stable state. The synchronous section consists of all the remaining steps of this algorithm until the algorithm says the synchronous section has ended. (Steps in synchronous sections are marked with ⌛.)
⌛ Set the element's delaying-the-load-event flag back to true (this delays the load event again, in case it hasn't been fired yet).
⌛ Set the networkState
back to NETWORK_LOADING
.
⌛ Jump back to the find next candidate step above.
The dedicated media source failure steps are the following steps:
Set the error
attribute to a new
MediaError
object whose code
attribute
is set to MEDIA_ERR_SRC_NOT_SUPPORTED
.
Set the element's networkState
attribute to
the NETWORK_NO_SOURCE
value.
Set the element's show poster flag to true.
Fire a simple event named error
at
the media element.
Set the element's delaying-the-load-event flag to false. This stops delaying the load event.
The resource fetch algorithm for a media element and a given absolute URL or media provider object is as follows:
If the algorithm was invoked with a URL, then let mode be remote, otherwise let mode be local.
If mode is local, then let the current media resource be the resource given by the absolute URL passed to this algorithm; otherwise, let the current media resource be the resource given by the media provider object. Either way, the current media resource is now the element's media resource.
Remove all media-resource-specific text tracks from the media element's list of pending text tracks, if any.
Run the appropriate steps from the following list:
Optionally, run the following substeps. This is the expected behaviour if the user agent
intends to not attempt to fetch the resource until the user requests it explicitly (e.g. as
a way to implement the preload
attribute's none
keyword).
Set the networkState
to NETWORK_IDLE
.
Queue a task to fire a simple event named suspend
at the element.
Queue a task to set the element's delaying-the-load-event flag to false. This stops delaying the load event.
Wait for the task to be run.
Wait for an implementation-defined event (e.g. the user requesting that the media element begin playback).
Set the element's delaying-the-load-event flag back to true (this delays the load event again, in case it hasn't been fired yet).
Set the networkState
to NETWORK_LOADING
.
Perform a potentially CORS-enabled fetch of the current media
resource's absolute URL, with the mode being the state of the
media element's crossorigin
content
attribute, the origin being the origin of the media element's
node document, and the default origin behaviour set to taint.
The resource obtained in this fashion, if any, contains the media data. It can
be CORS-same-origin or CORS-cross-origin; this affects whether
subtitles referenced in the media data are exposed in the API and, for
video
elements, whether a canvas
gets tainted when the video is drawn
on it.
The stall timeout is a user-agent defined length of time, which should be about
three seconds. When a media element that is actively attempting to obtain
media data has failed to receive any data for a duration equal to the stall
timeout, the user agent must queue a task to fire a simple
event named stalled
at the element.
User agents may allow users to selectively block or slow media data downloads. When a media element's download has been blocked altogether, the user agent must act as if it was stalled (as opposed to acting as if the connection was closed). The rate of the download may also be throttled automatically by the user agent, e.g. to balance the download with other connections sharing the same bandwidth.
User agents may decide to not download more content at any time, e.g.
after buffering five minutes of a one hour media resource, while waiting for the user to decide
whether to play the resource or not, while waiting for user input in an interactive resource, or
when the user navigates away from the page. When a media element's download has
been suspended, the user agent must queue a task, to set the networkState
to NETWORK_IDLE
and fire a simple event named
suspend
at the element. If and when downloading of the
resource resumes, the user agent must queue a task to set the networkState
to NETWORK_LOADING
. Between the queuing of these tasks,
the load is suspended (so progress
events don't fire,
as described above).
The preload
attribute provides a hint
regarding how much buffering the author thinks is advisable, even in the absence of the autoplay
attribute.
When a user agent decides to completely stall a download, e.g. if it is waiting until the user starts playback before downloading any further content, the user agent must queue a task to set the element's delaying-the-load-event flag to false. This stops delaying the load event.
The user agent may use whatever means necessary to fetch the resource (within the constraints put forward by this and other specifications); for example, reconnecting to the server in the face of network errors, using HTTP range retrieval requests, or switching to a streaming protocol. The user agent must consider a resource erroneous only if it has given up trying to fetch it.
To determine the format of the media resource, the user agent must use the rules for sniffing audio and video specifically.
While the load is not suspended (see below), every 350ms (±200ms) or for every byte
received, whichever is least frequent, queue a task to fire a simple
event named progress
at the element.
The networking task source tasks to process the data as it is being fetched must each immediately queue a task to run the first appropriate steps from the media data processing steps list below. (A new task is used for this so that the work described below occurs relative to the media element event task source rather than the networking task source.)
When the networking task source has queued the last task as part of fetching the media resource (i.e. once the download has completed), if the fetching process completes without errors, including decoding the media data, and if all of the data is available to the user agent without network access, then, the user agent must move on to the final step below. This might never happen, e.g. when streaming an infinite resource such as Web radio, or if the resource is longer than the user agent's ability to cache data.
While the user agent might still need network access to obtain parts of the media resource, the user agent must remain on this step.
For example, if the user agent has discarded the first half of a video, the
user agent will remain at this step even once the playback has
ended, because there is always the chance the user will seek back to the start. In fact,
in this situation, once playback has ended, the user agent
will end up firing a suspend
event, as described
earlier.
The resource described by the current media resource, if any, contains the media data. It is CORS-same-origin.
If the current media resource is a raw data stream (e.g. from a
File
object), then to determine the format of the media resource,
the user agent must use the rules for sniffing audio and video specifically.
Otherwise, if the data stream is pre-decoded, then the format is the format given by the
relevant specification.
Whenever new data for the current media resource becomes available, queue a task to run the first appropriate steps from the media data processing steps list below.
When the current media resource is permanently exhausted (e.g. all the bytes of
a Blob
have been processed), if there were no decoding errors, then the user
agent must move on to the final step below. This might never happen, e.g. if the
current media resource is a MediaStream
.
The media data processing steps list is as follows:
DNS errors, HTTP 4xx and 5xx errors (and equivalents in other protocols), and other fatal network errors that occur before the user agent has established whether the current media resource is usable, as well as the file using an unsupported container format, or using unsupported codecs for all the data, must cause the user agent to execute the following steps:
The user agent should cancel the fetching process.
Abort this subalgorithm, returning to the resource selection algorithm.
Create an AudioTrack
object to represent the audio track.
Update the media element's audioTracks
attribute's AudioTrackList
object with the new AudioTrack
object.
Let enable be unknown.
If either the media resource or the address of the current media resource indicate a particular set of audio tracks to enable, or if the user agent has information that would facilitate the selection of specific audio tracks to improve the user's experience, then: if this audio track is one of the ones to enable, then set enable to true, otherwise, set enable to false.
This could be triggered by Media Fragments URI fragment identifier syntax, but it could also be triggered e.g. by the user agent selecting a 5.1 surround sound audio track over a stereo audio track. [MEDIAFRAG]
If enable is still unknown, then, if the media element does not yet have an enabled audio track, then set enable to true, otherwise, set enable to false.
If enable is true, then enable this audio track, otherwise, do not enable this audio track.
Fire a trusted event with the name addtrack
, that does not bubble and is not cancelable,
and that uses the TrackEvent
interface, with the track
attribute initialised to the new
AudioTrack
object, at this AudioTrackList
object.
Create a VideoTrack
object to represent the video track.
Update the media element's videoTracks
attribute's VideoTrackList
object with the new VideoTrack
object.
Let enable be unknown.
If either the media resource or the address of the current media resource indicate a particular set of video tracks to enable, or if the user agent has information that would facilitate the selection of specific video tracks to improve the user's experience, then: if this video track is the first such video track, then set enable to true, otherwise, set enable to false.
This could again be triggered by Media Fragments URI fragment identifier syntax.
If enable is still unknown, then, if the media element does not yet have a selected video track, then set enable to true, otherwise, set enable to false.
If enable is true, then select this track and unselect any
previously selected video tracks, otherwise, do not select this video track. If other tracks
are unselected, then a change
event will be fired.
Fire a trusted event with the name addtrack
, that does not bubble and is not cancelable,
and that uses the TrackEvent
interface, with the track
attribute initialised to the new
VideoTrack
object, at this VideoTrackList
object.
This indicates that the resource is usable. The user agent must follow these substeps:
Establish the media timeline for the purposes of the current playback position and the earliest possible position, based on the media data.
Update the timeline offset to the date and time that corresponds to the zero time in the media timeline established in the previous step, if any. If no explicit time and date is given by the media resource, the timeline offset must be set to Not-a-Number (NaN).
Set the current playback position and the official playback position to the earliest possible position.
Update the duration
attribute with the time of
the last frame of the resource, if known, on the media timeline established
above. If it is not known (e.g. a stream that is in principle infinite), update the duration
attribute to the value positive Infinity.
The user agent will queue a task
to fire a simple event named durationchange
at the element at this point.
For video
elements, set the videoWidth
and videoHeight
attributes, and queue a task
to fire a simple event named resize
at
the media element.
Further resize
events will be fired
if the dimensions subsequently change.
Set the readyState
attribute to HAVE_METADATA
.
A loadedmetadata
DOM event
will be fired as part of setting the readyState
attribute to a new value.
Let jumped be false.
If the media element's default playback start position is greater than zero, then seek to that time, and let jumped be true.
Let the media element's default playback start position be zero.
Let the initial playback position be zero.
If either the media resource or the address of the current media resource indicate a particular start time, then set the initial playback position to that time and, if jumped is still false, seek to that time and let jumped be true.
For example, with media formats that support the Media Fragments URI fragment identifier syntax, the fragment identifier can be used to indicate a start position. [MEDIAFRAG]
If there is no enabled audio track, then
enable an audio track. This will cause a change
event to be fired.
If there is no selected video track,
then select a video track. This will cause a change
event to be fired.
If the media element has a current media controller, then: if jumped is true and the initial playback position, relative to the current media controller's timeline, is greater than the current media controller's media controller position, then seek the media controller to the media element's initial playback position, relative to the current media controller's timeline; otherwise, seek the media element to the media controller position, relative to the media element's timeline.
Once the readyState
attribute reaches HAVE_CURRENT_DATA
, after
the loadeddata
event has been fired, set the
element's delaying-the-load-event flag to false. This stops delaying the load event.
A user agent that is attempting to reduce network usage while still fetching
the metadata for each media resource would also stop buffering at this point,
following the rules described previously, which involve the
networkState
attribute switching to the NETWORK_IDLE
value and a suspend
event firing.
The user agent is required to determine the duration of the media resource and go through this step before playing.
Fire a simple event named progress
at the media element.
Set the networkState
to NETWORK_IDLE
and fire a simple event named
suspend
at the media element.
If the user agent ever discards any media data and then needs to resume the
network activity to obtain it again, then it must queue a task to set the networkState
to NETWORK_LOADING
.
If the user agent can keep the media resource loaded, then the algorithm will continue to its final step below, which aborts the algorithm.
Fatal network errors that occur after the user agent has established whether the current media resource is usable (i.e. once the media element's
readyState
attribute is no longer HAVE_NOTHING
) must cause the user agent to execute the
following steps:
The user agent should cancel the fetching process.
Set the error
attribute to a new
MediaError
object whose code
attribute
is set to MEDIA_ERR_NETWORK
.
Set the element's networkState
attribute
to the NETWORK_IDLE
value.
Set the element's delaying-the-load-event flag to false. This stops delaying the load event.
Fire a simple event named error
at
the media element.
Abort the overall resource selection algorithm.
Fatal errors in decoding the media data that occur after the user agent has
established whether the current media resource is usable (i.e. once the media element's
readyState
attribute is no longer HAVE_NOTHING
) must cause the
user agent to execute the following steps:
The user agent should cancel the fetching process.
Set the error
attribute to a new
MediaError
object whose code
attribute
is set to MEDIA_ERR_DECODE
.
Set the element's networkState
attribute
to the NETWORK_IDLE
value.
Set the element's delaying-the-load-event flag to false. This stops delaying the load event.
Fire a simple event named error
at
the media element.
Abort the overall resource selection algorithm.
The fetching process is aborted by the user, e.g. because the user
pressed a "stop" button, the user agent must execute the following steps. These steps are not
followed if the load()
method itself is invoked while
these steps are running, as the steps above handle that particular kind of abort.
The user agent should cancel the fetching process.
Set the error
attribute to a new
MediaError
object whose code
attribute
is set to MEDIA_ERR_ABORTED
.
Fire a simple event named abort
at
the media element.
If the media element's readyState
attribute has a value equal to HAVE_NOTHING
, set
the element's networkState
attribute to the
NETWORK_EMPTY
value, set the element's
show poster flag to true, and fire a simple event named emptied
at the element.
Otherwise, set the element's networkState
attribute to the NETWORK_IDLE
value.
Set the element's delaying-the-load-event flag to false. This stops delaying the load event.
Abort the overall resource selection algorithm.
The server returning data that is partially usable but cannot be optimally rendered must cause the user agent to render just the bits it can handle, and ignore the rest.
If the media data is CORS-same-origin, run the steps to expose a media-resource-specific text track with the relevant data.
Cross-origin videos do not expose their subtitles, since that would allow attacks such as hostile sites reading subtitles from confidential videos on a user's intranet.
Final step: If the user agent ever reaches this step (which can only happen if the entire resource gets loaded and kept available): abort the overall resource selection algorithm.
When a media element is to forget the media element's media-resource-specific
tracks, the user agent must remove from the media element's list of text
tracks all the media-resource-specific
text tracks, then empty the media element's audioTracks
attribute's AudioTrackList
object,
then empty the media element's videoTracks
attribute's VideoTrackList
object. No events (in particular, no removetrack
events) are fired as part of this; the error
and emptied
events, fired by the algorithms that invoke this one, can be used instead.
The preload
attribute is an enumerated
attribute. The following table lists the keywords and states for the attribute — the
keywords in the left column map to the states in the cell in the second column on the same row as
the keyword. The attribute can be changed even once the media resource is being
buffered or played; the descriptions in the table below are to be interpreted with that in
mind.
Keyword | State | Brief description |
---|---|---|
none
| None | Hints to the user agent that either the author does not expect the user to need the media resource, or that the server wants to minimise unnecessary traffic. This state does not provide a hint regarding how aggressively to actually download the media resource if buffering starts anyway (e.g. once the user hits "play"). |
metadata
| Metadata | Hints to the user agent that the author does not expect the user to need the media resource, but that fetching the resource metadata (dimensions, track list, duration, etc), and maybe even the first few frames, is reasonable. If the user agent precisely fetches no more than the metadata, then the media element will end up with its readyState attribute set to HAVE_METADATA ; typically though, some frames will be obtained as well and it will probably be HAVE_CURRENT_DATA or HAVE_FUTURE_DATA .
When the media resource is playing, hints to the user agent that bandwidth is to be considered scarce, e.g. suggesting throttling the download so that the media data is obtained at the slowest possible rate that still maintains consistent playback.
|
auto
| Automatic | Hints to the user agent that the user agent can put the user's needs first without risk to the server, up to and including optimistically downloading the entire resource. |
The empty string is also a valid keyword, and maps to the Automatic state. The attribute's missing value default is user-agent defined, though the Metadata state is suggested as a compromise between reducing server load and providing an optimal user experience.
Authors might switch the attribute from "none
" or "metadata
" to "auto
" dynamically once the user begins playback. For
example, on a page with many videos this might be used to indicate that the many videos are not to
be downloaded unless requested, but that once one is requested it is to be downloaded
aggressively.
The preload
attribute is intended to provide a hint to
the user agent about what the author thinks will lead to the best user experience. The attribute
may be ignored altogether, for example based on explicit user preferences or based on the
available connectivity.
The preload
IDL attribute must
reflect the content attribute of the same name, limited to only known
values.
The autoplay
attribute can override the
preload
attribute (since if the media plays, it naturally
has to buffer first, regardless of the hint given by the preload
attribute). Including both is not an error, however.
buffered
Returns a TimeRanges
object that represents the ranges of the media
resource that the user agent has buffered.
The buffered
attribute must return a new
static normalised TimeRanges
object that represents the ranges of the
media resource, if any, that the user agent has buffered, at the time the attribute
is evaluated. Users agents must accurately determine the ranges available, even for media streams
where this can only be determined by tedious inspection.
Typically this will be a single range anchored at the zero point, but if, e.g. the user agent uses HTTP range requests in response to seeking, then there could be multiple ranges.
User agents may discard previously buffered data.
Thus, a time position included within a range of the objects return by the buffered
attribute at one time can end up being not included in
the range(s) of objects returned by the same attribute at later times.
duration
Returns the length of the media resource, in seconds, assuming that the start of the media resource is at time zero.
Returns NaN if the duration isn't available.
Returns Infinity for unbounded streams.
currentTime
[ = value ]Returns the official playback position, in seconds.
Can be set, to seek to the given time.
Will throw an InvalidStateError
exception if there is no selected media
resource or if there is a current media controller.
A media resource has a media timeline that maps times (in seconds) to positions in the media resource. The origin of a timeline is its earliest defined position. The duration of a timeline is its last defined position.
Establishing the media
timeline: If the media resource somehow specifies an explicit timeline whose
origin is not negative (i.e. gives each frame a specific time offset and gives the first frame a
zero or positive offset), then the media timeline should be that timeline. (Whether
the media resource can specify a timeline or not depends on the media resource's format.) If the media resource specifies an
explicit start time and date, then that time and date should be considered the zero point
in the media timeline; the timeline offset will be the time and date,
exposed using the getStartDate()
method.
If the media resource has a discontinuous timeline, the user agent must extend the timeline used at the start of the resource across the entire resource, so that the media timeline of the media resource increases linearly starting from the earliest possible position (as defined below), even if the underlying media data has out-of-order or even overlapping time codes.
For example, if two clips have been concatenated into one video file, but the video format exposes the original times for the two clips, the video data might expose a timeline that goes, say, 00:15..00:29 and then 00:05..00:38. However, the user agent would not expose those times; it would instead expose the times as 00:15..00:29 and 00:29..01:02, as a single video.
In the rare case of a media resource that does not have an explicit timeline, the
zero time on the media timeline should correspond to the first frame of the
media resource. In the even rarer case of a media resource with no
explicit timings of any kind, not even frame durations, the user agent must itself determine the
time for each frame in a user-agent-defined manner.
An example of a file format with no explicit timeline but with explicit frame
durations is the Animated GIF format. An example of a file format with no explicit timings at all
is the JPEG-push format (multipart/x-mixed-replace
with JPEG frames, often
used as the format for MJPEG streams).
If, in the case of a resource with no timing information, the user agent will nonetheless be able to seek to an earlier point than the first frame originally provided by the server, then the zero time should correspond to the earliest seekable time of the media resource; otherwise, it should correspond to the first frame received from the server (the point in the media resource at which the user agent began receiving the stream).
At the time of writing, there is no known format that lacks explicit frame time offsets yet still supports seeking to a frame before the first frame sent by the server.
Consider a stream from a TV broadcaster, which begins streaming on a sunny Friday afternoon in
October, and always sends connecting user agents the media data on the same media timeline, with
its zero time set to the start of this stream. Months later, user agents connecting to this
stream will find that the first frame they receive has a time with millions of seconds. The getStartDate()
method would always return the date that the
broadcast started; this would allow controllers to display real times in their scrubber (e.g.
"2:30pm") rather than a time relative to when the broadcast began ("8 months, 4 hours, 12
minutes, and 23 seconds").
Consider a stream that carries a video with several concatenated fragments, broadcast by a
server that does not allow user agents to request specific times but instead just streams the
video data in a predetermined order, with the first frame delivered always being identified as
the frame with time zero. If a user agent connects to this stream and receives fragments defined
as covering timestamps 2010-03-20 23:15:00 UTC to 2010-03-21 00:05:00 UTC and 2010-02-12 14:25:00
UTC to 2010-02-12 14:35:00 UTC, it would expose this with a media timeline starting
at 0s and extending to 3,600s (one hour). Assuming the streaming server disconnected at the end
of the second clip, the duration
attribute would then
return 3,600. The getStartDate()
method would return a
Date
object with a time corresponding to 2010-03-20 23:15:00 UTC. However, if a
different user agent connected five minutes later, it would (presumably) receive
fragments covering timestamps 2010-03-20 23:20:00 UTC to 2010-03-21 00:05:00 UTC and 2010-02-12
14:25:00 UTC to 2010-02-12 14:35:00 UTC, and would expose this with a media timeline
starting at 0s and extending to 3,300s (fifty five minutes). In this case, the getStartDate()
method would return a Date
object
with a time corresponding to 2010-03-20 23:20:00 UTC.
In both of these examples, the seekable
attribute
would give the ranges that the controller would want to actually display in its UI; typically, if
the servers don't support seeking to arbitrary times, this would be the range of time from the
moment the user agent connected to the stream up to the latest frame that the user agent has
obtained; however, if the user agent starts discarding earlier information, the actual range
might be shorter.
In any case, the user agent must ensure that the earliest possible position (as defined below) using the established media timeline, is greater than or equal to zero.
The media timeline also has an associated clock. Which clock is used is user-agent defined, and may be media resource-dependent, but it should approximate the user's wall clock.
All the media elements that share current media controller use the same clock for their media timeline.
Media elements have a current playback position, which must initially (i.e. in the absence of media data) be zero seconds. The current playback position is a time on the media timeline.
Media elements also have an official playback position, which must initially be set to zero seconds. The official playback position is an approximation of the current playback position that is kept stable while scripts are running.
Media elements also have a default playback start position, which must initially be set to zero seconds. This time is used to allow the element to be seeked even before the media is loaded.
Each media element has a show poster flag. When a media
element is created, this flag must be set to true. This flag is used to control when the
user agent is to show a poster frame for a video
element instead of showing the video
contents.
The currentTime
attribute must, on
getting, return the media element's default playback start position,
unless that is zero, in which case it must return the element's official playback
position. The returned value must be expressed in seconds. On setting, if the media
element has a current media controller, then the user agent must throw an
InvalidStateError
exception; otherwise, if the media element's readyState
is HAVE_NOTHING
, then it must set the media
element's default playback start position to the new value; otherwise, it must
set the official playback position to the new value and then seek to the new value. The new value must be interpreted as being in
seconds.
If the media resource is a streaming resource, then the user agent might be unable to obtain certain parts of the resource after it has expired from its buffer. Similarly, some media resources might have a media timeline that doesn't start at zero. The earliest possible position is the earliest position in the stream or resource that the user agent can ever obtain again. It is also a time on the media timeline.
The earliest possible position is not explicitly exposed in the API;
it corresponds to the start time of the first range in the seekable
attribute's TimeRanges
object, if any, or
the current playback position otherwise.
When the earliest possible position changes, then: if the current playback
position is before the earliest possible position, the user agent must seek to the earliest possible position; otherwise, if
the user agent has not fired a timeupdate
event at the
element in the past 15 to 250ms and is not still running event handlers for such an event, then
the user agent must queue a task to fire a simple event named timeupdate
at the element.
Because of the above requirement and the requirement in the resource fetch algorithm that kicks in when the metadata of the clip becomes known, the current playback position can never be less than the earliest possible position.
If at any time the user agent learns that an audio or video track has ended and all media
data relating to that track corresponds to parts of the media timeline that
are before the earliest possible position, the user agent may queue a
task to first remove the track from the audioTracks
attribute's AudioTrackList
object or the videoTracks
attribute's VideoTrackList
object as
appropriate and then fire a trusted event with the name removetrack
, that does not bubble and is not cancelable, and that
uses the TrackEvent
interface, with the track
attribute initialised to the AudioTrack
or
VideoTrack
object representing the track, at the media element's
aforementioned AudioTrackList
or VideoTrackList
object.
The duration
attribute must return the time
of the end of the media resource, in seconds, on the media timeline. If
no media data is available, then the attributes must return the Not-a-Number (NaN)
value. If the media resource is not known to be bounded (e.g. streaming radio, or a
live event with no announced end time), then the attribute must return the positive Infinity
value.
The user agent must determine the duration of the media resource before playing
any part of the media data and before setting readyState
to a value equal to or greater than HAVE_METADATA
, even if doing so requires fetching multiple
parts of the resource.
When the length of the media resource changes to a known value
(e.g. from being unknown to known, or from a previously established length to a new length) the
user agent must queue a task to fire a simple event named durationchange
at the media element. (The
event is not fired when the duration is reset as part of loading a new media resource.) If the
duration is changed such that the current playback position ends up being greater
than the time of the end of the media resource, then the user agent must also seek to the time of the end of the media resource.
If an "infinite" stream ends for some reason, then the duration would change
from positive Infinity to the time of the last frame or sample in the stream, and the durationchange
event would be fired. Similarly, if the
user agent initially estimated the media resource's duration instead of determining
it precisely, and later revises the estimate based on new information, then the duration would
change and the durationchange
event would be
fired.
Some video files also have an explicit date and time corresponding to the zero time in the media timeline, known as the timeline offset. Initially, the timeline offset must be set to Not-a-Number (NaN).
The getStartDate()
method must return a new Date
object representing the current
timeline offset.
The loop
attribute is a boolean
attribute that, if specified, indicates that the media element is to seek back
to the start of the media resource upon reaching the end.
The loop
attribute has no effect while the element has a
current media controller.
The loop
IDL attribute must reflect
the content attribute of the same name.
readyState
Returns a value that expresses the current state of the element with respect to rendering the current playback position, from the codes in the list below.
Media elements have a ready state, which describes to what degree they are ready to be rendered at the current playback position. The possible values are as follows; the ready state of a media element at any particular time is the greatest value describing the state of the element:
HAVE_NOTHING
(numeric value 0)No information regarding the media resource is available. No data for the
current playback position is available. Media
elements whose networkState
attribute are set
to NETWORK_EMPTY
are always in the HAVE_NOTHING
state.
HAVE_METADATA
(numeric value 1)Enough of the resource has been obtained that the duration of the resource is available.
In the case of a video
element, the dimensions of the video are also available. The
API will no longer throw an exception when seeking. No media data is available for
the immediate current playback position.
HAVE_CURRENT_DATA
(numeric value 2)Data for the immediate current playback position is available, but either not
enough data is available that the user agent could successfully advance the current
playback position in the direction of playback at all without immediately
reverting to the HAVE_METADATA
state, or there is no
more data to obtain in the direction of playback. For example, in video this
corresponds to the user agent having data from the current frame, but not the next frame, when
the current playback position is at the end of the current frame; and to when playback has ended.
HAVE_FUTURE_DATA
(numeric value 3)Data for the immediate current playback position is available, as well as
enough data for the user agent to advance the current playback position in the
direction of playback at least a little without immediately reverting to the HAVE_METADATA
state, and the text tracks are
ready. For example, in video this corresponds to the user agent having data for at least
the current frame and the next frame when the current playback position is at the
instant in time between the two frames, or to the user agent having the video data for the
current frame and audio data to keep playing at least a little when the current playback
position is in the middle of a frame. The user agent cannot be in this state if playback has ended, as the current playback position
can never advance in this case.
HAVE_ENOUGH_DATA
(numeric value 4)All the conditions described for the HAVE_FUTURE_DATA
state are met, and, in addition,
either of the following conditions is also true:
In practice, the difference between HAVE_METADATA
and HAVE_CURRENT_DATA
is negligible. Really the only time
the difference is relevant is when painting a video
element onto a
canvas
, where it distinguishes the case where something will be drawn (HAVE_CURRENT_DATA
or greater) from the case where
nothing is drawn (HAVE_METADATA
or less). Similarly,
the difference between HAVE_CURRENT_DATA
(only
the current frame) and HAVE_FUTURE_DATA
(at least
this frame and the next) can be negligible (in the extreme, only one frame). The only time that
distinction really matters is when a page provides an interface for "frame-by-frame"
navigation.
When the ready state of a media element whose networkState
is not NETWORK_EMPTY
changes, the user agent must follow the steps
given below:
Apply the first applicable set of substeps from the following list:
HAVE_NOTHING
,
and the new ready state is HAVE_METADATA
Queue a task to fire a simple event named loadedmetadata
at the element.
Before this task is run, as part of the event loop mechanism, the
rendering will have been updated to resize the video
element if appropriate.
HAVE_METADATA
and the new ready state is HAVE_CURRENT_DATA
or greaterIf this is the first time this occurs for this media
element since the load()
algorithm was last
invoked, the user agent must queue a task to fire a simple event
named loadeddata
at the element.
If the new ready state is HAVE_FUTURE_DATA
or HAVE_ENOUGH_DATA
, then the relevant steps
below must then be run also.
HAVE_FUTURE_DATA
or more, and the new ready state is
HAVE_CURRENT_DATA
or lessIf the media element was potentially
playing before its readyState
attribute
changed to a value lower than HAVE_FUTURE_DATA
, and the element has not
ended playback, and playback has not stopped due to errors,
paused for user interaction, or paused for in-band content, the user
agent must queue a task to fire a simple event named timeupdate
at the element, and queue a task
to fire a simple event named waiting
at
the element.
HAVE_CURRENT_DATA
or less, and the new ready state
is HAVE_FUTURE_DATA
The user agent must queue a task to fire a simple event named
canplay
at the element.
If the element's paused
attribute is false, the user
agent must queue a task to fire a simple event named playing
at the element.
HAVE_ENOUGH_DATA
If the previous ready state was HAVE_CURRENT_DATA
or less, the user agent must
queue a task to fire a simple event named canplay
at the element, and, if the element's paused
attribute is false, queue a task to
fire a simple event named playing
at the element.
If the autoplaying flag is true, and the paused
attribute is true, and the media element
has an autoplay
attribute specified, and the
media element's node document's active sandboxing flag set
does not have the sandboxed automatic features browsing context flag set, then
the user agent may also run the following substeps:
paused
attribute to false.play
at the element.playing
at the element.User agents do not need to support autoplay, and it is suggested that user
agents honor user preferences on the matter. Authors are urged to use the autoplay
attribute rather than using script to force the
video to play, so as to allow the user to override the behaviour if so desired.
In any case, the user agent must finally queue a task to fire a simple
event named canplaythrough
at the element.
If the media element has a current media controller, then report the controller state for the media element's current media controller.
It is possible for the ready state of a media element to jump between these states
discontinuously. For example, the state of a media element can jump straight from HAVE_METADATA
to HAVE_ENOUGH_DATA
without passing through the HAVE_CURRENT_DATA
and HAVE_FUTURE_DATA
states.
The readyState
IDL attribute must, on
getting, return the value described above that describes the current ready state of the
media element.
The autoplay
attribute is a boolean
attribute. When present, the user agent (as described in the algorithm
described herein) will automatically begin playback of the media resource as
soon as it can do so without stopping.
Authors are urged to use the autoplay
attribute rather than using script to trigger automatic playback, as this allows the user to
override the automatic playback when it is not desired, e.g. when using a screen reader. Authors
are also encouraged to consider not using the automatic playback behaviour at all, and instead to
let the user agent wait for the user to start playback explicitly.
The autoplay
IDL attribute must
reflect the content attribute of the same name.
paused
Returns true if playback is paused; false otherwise.
ended
Returns true if playback has reached the end of the media resource.
defaultPlaybackRate
[ = value ]Returns the default rate of playback, for when the user is not fast-forwarding or reversing through the media resource.
Can be set, to change the default rate of playback.
The default rate has no direct effect on playback, but if the user switches to a fast-forward mode, when they return to the normal playback mode, it is expected that the rate of playback will be returned to the default rate of playback.
When the element has a current media controller, the defaultPlaybackRate
attribute is ignored and the
current media controller's defaultPlaybackRate
is used instead.
playbackRate
[ = value ]Returns the current rate playback, where 1.0 is normal speed.
Can be set, to change the rate of playback.
When the element has a current media controller, the playbackRate
attribute is ignored and the current
media controller's playbackRate
is
used instead.
played
Returns a TimeRanges
object that represents the ranges of the media
resource that the user agent has played.
play
()Sets the paused
attribute to false, loading the
media resource and beginning playback if necessary. If the playback had ended, will
restart it from the start.
pause
()Sets the paused
attribute to true, loading the
media resource if necessary.
The paused
attribute represents whether the
media element is paused or not. The attribute must initially be true.
A media element is a blocked media element if its readyState
attribute is in the HAVE_NOTHING
state, the HAVE_METADATA
state, or the HAVE_CURRENT_DATA
state, or if the element has
paused for user interaction or paused for in-band content.
A media element is said to be potentially playing when its paused
attribute is false, the element has not ended
playback, playback has not stopped due to errors, the element either has no
current media controller or has a current media controller but is not
blocked on its media controller, and the element is not a blocked media
element.
A waiting
DOM event can be fired as a result of an element that is
potentially playing stopping playback due to its readyState
attribute changing to a value lower than HAVE_FUTURE_DATA
.
A media element is said to have ended playback when:
readyState
attribute is HAVE_METADATA
or greater, and
Either:
loop
attribute specified, or the media element has
a current media controller.
Or:
The ended
attribute must return true if, the
last time the event loop reached step 1, the media element had
ended playback and the direction of playback was forwards, and false
otherwise.
A media element is said to have stopped due to errors when the
element's readyState
attribute is HAVE_METADATA
or greater, and the user agent encounters a non-fatal error during the processing of the
media data, and due to that error, is not able to play the content at the
current playback position.
A media element is said to have paused for user interaction when its
paused
attribute is false, the readyState
attribute is either HAVE_FUTURE_DATA
or HAVE_ENOUGH_DATA
and the user agent has reached a point
in the media resource where the user has to make a selection for the resource to
continue. If the media element has a current media controller when this
happens, then the user agent must report the controller state for the media
element's current media controller. If the media element has a
current media controller when the user makes a selection, allowing playback to
resume, the user agent must similarly report the controller state for the media
element's current media controller.
It is possible for a media element to have both ended playback and paused for user interaction at the same time.
When a media element that is potentially playing stops playing
because it has paused for user interaction, the user agent must queue a
task to fire a simple event named timeupdate
at the element.
A media element is said to have paused for in-band content when its
paused
attribute is false, the readyState
attribute is either HAVE_FUTURE_DATA
or HAVE_ENOUGH_DATA
and the user agent has suspended
playback of the media resource in order to play content that is temporally anchored
to the media resource and has a non-zero length, or to play content that is
temporally anchored to a segment of the media resource but has a length longer than
that segment. If the media element has a current media controller when
this happens, then the user agent must report the controller state for the
media element's current media controller. If the media
element has a current media controller when the user agent unsuspends
playback, the user agent must similarly report the controller state for the
media element's current media controller.
One example of when a media element would be paused for in-band content is when the user agent is playing audio descriptions from an external WebVTT file, and the synthesized speech generated for a cue is longer than the time between the text track cue start time and the text track cue end time.
When the current playback position reaches the end of the media resource when the direction of playback is forwards, then the user agent must follow these steps:
If the media element has a loop
attribute specified and does not have a current media controller, then seek to the earliest possible position of the
media resource and abort these steps.
As defined above, the ended
IDL attribute starts
returning true once the event loop returns to step 1.
Queue a task to fire a simple event named timeupdate
at the media element.
Queue a task that, if the media element does not have a
current media controller, and the media element has still ended
playback, and the direction of playback is still forwards, and paused is false, changes paused to true and fires a
simple event named pause
at the media
element.
Queue a task to fire a simple event named ended
at the media element.
If the media element has a current media controller, then report the controller state for the media element's current media controller.
When the current playback position reaches the earliest possible
position of the media resource when the direction of playback is
backwards, then the user agent must only queue a task to fire a simple
event named timeupdate
at the element.
The word "reaches" here does not imply that the current playback position needs to have changed during normal playback; it could be via seeking, for instance.
The defaultPlaybackRate
attribute
gives the desired speed at which the media resource is to play, as a multiple of its
intrinsic speed. The attribute is mutable: on getting it must return the last value it was set to,
or 1.0 if it hasn't yet been set; on setting the attribute must be set to the new value.
The defaultPlaybackRate
is used
by the user agent when it exposes a user
interface to the user.
The playbackRate
attribute gives the
effective playback rate (assuming there is no current media controller
overriding it), which is the speed at which the media resource plays, as a multiple
of its intrinsic speed. If it is not equal to the defaultPlaybackRate
, then the implication is that the
user is using a feature such as fast forward or slow motion playback. The attribute is mutable: on
getting it must return the last value it was set to, or 1.0 if it hasn't yet been set; on setting
the attribute must be set to the new value, and the playback will change speed (if the element is
potentially playing and there is no current media controller).
When the defaultPlaybackRate
or playbackRate
attributes change value (either by
being set by script or by being changed directly by the user agent, e.g. in response to user
control) the user agent must queue a task to fire a simple event named
ratechange
at the media element.
The defaultPlaybackRate
and
playbackRate
attributes have no effect when the
media element has a current media controller; the namesake attributes on
the MediaController
object are used instead in that situation.
The played
attribute must return a new static
normalised TimeRanges
object that represents the ranges of points on the
media timeline of the media resource reached through the usual monotonic
increase of the current playback position during normal playback, if any, at the time
the attribute is evaluated.
When the play()
method on a media
element is invoked, the user agent must run the following steps.
If the media element's networkState
attribute has the value NETWORK_EMPTY
, invoke the media element's
resource selection algorithm.
If the playback has ended and the direction of playback is forwards, and the media element does not have a current media controller, seek to the earliest possible position of the media resource.
This will cause the user agent to queue a
task to fire a simple event named timeupdate
at the media element.
If the media element has a current media controller, then bring the media element up to speed with its new media controller.
If the media element's paused
attribute is
true, run the following substeps:
Change the value of paused
to false.
If the show poster flag is true, set the element's show poster flag to false and run the time marches on steps.
Queue a task to fire a simple event named play
at the element.
If the media element's readyState
attribute has the value HAVE_NOTHING
, HAVE_METADATA
, or HAVE_CURRENT_DATA
, queue a task to
fire a simple event named waiting
at the
element.
Otherwise, the media element's readyState
attribute has the value HAVE_FUTURE_DATA
or HAVE_ENOUGH_DATA
: queue a task to
fire a simple event named playing
at the
element.
Set the media element's autoplaying flag to false.
If the media element has a current media controller, then report the controller state for the media element's current media controller.
When the pause()
method is invoked, and when
the user agent is required to pause the media element, the user agent must run the
following steps:
If the media element's networkState
attribute has the value NETWORK_EMPTY
, invoke the media element's
resource selection algorithm.
Run the internal pause steps for the media element.
The internal pause steps for a media element are as follows:
Set the media element's autoplaying flag to false.
If the media element's paused
attribute
is false, run the following steps:
Change the value of paused
to true.
Queue a task to fire a simple
event named timeupdate
at the
element.
Queue a task to fire a simple
event named pause
at the element.
Set the official playback position to the current playback position.
If the media element has a current media controller, then report the controller state for the media element's current media controller.
The effective playback rate is not necessarily the element's playbackRate
. When a media element has a
current media controller, its effective playback rate is the
MediaController
's media controller playback rate. Otherwise, the
effective playback rate is just the element's playbackRate
. Thus, the current media
controller overrides the media element.
If the effective playback rate is positive or zero, then the direction of playback is forwards. Otherwise, it is backwards.
When a media element is potentially playing and
its Document
is a fully active Document
, its current
playback position must increase monotonically at effective playback rate units
of media time per unit time of the media timeline's clock. (This specification always
refers to this as an increase, but that increase could actually be a decrease if
the effective playback rate is negative.)
The effective playback rate can be 0.0, in which case the
current playback position doesn't move, despite playback not being paused (paused
doesn't become true, and the pause
event doesn't fire).
This specification doesn't define how the user agent achieves the appropriate playback rate — depending on the protocol and media available, it is plausible that the user agent could negotiate with the server to have the server provide the media data at the appropriate rate, so that (except for the period between when the rate is changed and when the server updates the stream's playback rate) the client doesn't actually have to drop or interpolate any frames.
Any time the user agent provides a stable state, the official playback position must be set to the current playback position.
While the direction of playback is backwards, any corresponding audio must be muted. While the effective playback rate is so low or so high that the user agent cannot play audio usefully, the corresponding audio must also be muted. If the effective playback rate is not 1.0, the user agent may apply pitch adjustments to the audio as necessary to render it faithfully.
Media elements that are potentially playing
while not in a Document
must not play any video, but should play any
audio component. Media elements must not stop playing just because all references to them have
been removed; only once a media element is in a state where no further audio could ever be played
by that element may the element be garbage collected.
It is possible for an element to which no explicit references exist to play audio,
even if such an element is not still actively playing: for instance, it could have a current
media controller that still has references and can still be unpaused, or it could be
unpaused but stalled waiting for content to buffer, or it could be still buffering, but with a
suspend
event listener that begins playback. Even a
media element whose media resource has no audio tracks could eventually play audio
again if it had an event listener that changes the media resource.
Each media element has a list of newly introduced cues, which must be initially empty. Whenever a text track cue is added to the list of cues of a text track that is in the list of text tracks for a media element, that cue must be added to the media element's list of newly introduced cues. Whenever a text track is added to the list of text tracks for a media element, all of the cues in that text track's list of cues must be added to the media element's list of newly introduced cues. When a media element's list of newly introduced cues has new cues added while the media element's show poster flag is not set, then the user agent must run the time marches on steps.
When a text track cue is removed from the list of cues of a text track that is in the list of text tracks for a media element, and whenever a text track is removed from the list of text tracks of a media element, if the media element's show poster flag is not set, then the user agent must run the time marches on steps.
When the current playback position of a media element changes (e.g. due to playback or seeking), the user agent must run the time marches on steps. If the current playback position changes while the steps are running, then the user agent must wait for the steps to complete, and then must immediately rerun the steps. (These steps are thus run as often as possible or needed — if one iteration takes a long time, this can cause certain cues to be skipped over as the user agent rushes ahead to "catch up".)
The time marches on steps are as follows:
Let current cues be a list of cues, initialised to contain all the cues of all the or showing text tracks of the media element (not the disabled ones) whose start times are less than or equal to the current playback position and whose end times are greater than the current playback position.
Let other cues be a list of cues, initialised to contain all the cues of and showing text tracks of the media element that are not present in current cues.
Let last time be the current playback position at the time this algorithm was last run for this media element, if this is not the first time it has run.
If the current playback position has, since the last time this algorithm was run, only changed through its usual monotonic increase during normal playback, then let missed cues be the list of cues in other cues whose start times are greater than or equal to last time and whose end times are less than or equal to the current playback position. Otherwise, let missed cues be an empty list.
Remove all the cues in missed cues that are also in the media element's list of newly introduced cues, and then empty the element's list of newly introduced cues.
If the time was reached through the usual monotonic increase of the current playback
position during normal playback, and if the user agent has not fired a timeupdate
event at the element in the past 15 to 250ms and
is not still running event handlers for such an event, then the user agent must queue a
task to fire a simple event named timeupdate
at the element. (In the other cases, such as
explicit seeks, relevant events get fired as part of the overall process of changing the
current playback position.)
The event thus is not to be fired faster than about 66Hz or slower than 4Hz (assuming the event handlers don't take longer than 250ms to run). User agents are encouraged to vary the frequency of the event based on the system load and the average cost of processing the event each time, so that the UI updates are not any more frequent than the user agent can comfortably handle while decoding the video.
If all of the cues in current cues have their text track cue active flag set, none of the cues in other cues have their text track cue active flag set, and missed cues is empty, then abort these steps.
If the time was reached through the usual monotonic increase of the current playback position during normal playback, and there are cues in other cues that have their text track cue pause-on-exit flag set and that either have their text track cue active flag set or are also in missed cues, then immediately pause the media element.
In the other cases, such as explicit seeks, playback is not paused by going past the end time of a cue, even if that cue has its text track cue pause-on-exit flag set.
Let events be a list of tasks, initially empty. Each task in this list will be associated with a text track, a text track cue, and a time, which are used to sort the list before the tasks are queued.
Let affected tracks be a list of text tracks, initially empty.
When the steps below say to prepare an event named event for a text track cue target with a time time, the user agent must run these substeps:
Let track be the text track with which the text track cue target is associated.
Create a task to fire a simple event named event at target.
Add the newly created task to events, associated with the time time, the text track track, and the text track cue target.
Add track to affected tracks.
For each text track cue in missed
cues, prepare an event named enter
for the
TextTrackCue
object with the text track cue start time.
For each text track cue in other
cues that either has its text track cue active flag set or is in missed cues, prepare an event named exit
for the TextTrackCue
object with the later of the
text track cue end time and the text track cue start time.
For each text track cue in current
cues that does not have its text track cue active flag set, prepare an
event named enter
for the TextTrackCue
object with the text track cue start time.
Sort the tasks in events in ascending time order (tasks with earlier times first).
Further sort tasks in events that have the same time by the relative text track cue order of the text track cues associated with these tasks.
Finally, sort tasks in events that have
the same time and same text track cue order by placing tasks that fire enter
events before
those that fire exit
events.
Sort affected tracks in the same order as the text tracks appear in the media element's list of text tracks, and remove duplicates.
For each text track in affected tracks, in the list
order, queue a task to fire a simple event named cuechange
at the TextTrack
object, and, if the
text track has a corresponding track
element, to then fire a
simple event named cuechange
at the
track
element as well.
Set the text track cue active flag of all the cues in the current cues, and unset the text track cue active flag of all the cues in the other cues.
Run the rules for updating the text track rendering of each of the text tracks in affected tracks that are showing. For example, for text tracks based on WebVTT, the rules for updating the display of WebVTT text tracks. [WEBVTT]
For the purposes of the algorithm above, a text track cue is considered to be part of a text track only if it is listed in the text track list of cues, not merely if it is associated with the text track.
If the media element's node document stops being a fully active document, then the playback will stop until the document is active again.
When a media element is removed
from a Document
, the user agent must run the following steps:
Await a stable state, allowing the task that removed the media element from the
Document
to continue. The synchronous section consists of all the
remaining steps of this algorithm. (Steps in the synchronous section are marked with
⌛.)
⌛ If the media element is in a Document
,
abort these steps.
⌛ Run the internal pause steps for the media element.
seeking
Returns true if the user agent is currently seeking.
seekable
Returns a TimeRanges
object that represents the ranges of the media
resource to which it is possible for the user agent to seek.
fastSeek
( time )Seeks to near the given time as fast as possible, trading precision for
speed. (To seek to a precise time, use the currentTime
attribute.)
This does nothing if the media resource has not been loaded.
The seeking
attribute must initially have the
value false.
The fastSeek()
method must seek to the time given by the method's argument, with the
approximate-for-speed flag set.
When the user agent is required to seek to a particular new playback position in the media resource, optionally with the approximate-for-speed flag set, it means that the user agent must run the following steps. This algorithm interacts closely with the event loop mechanism; in particular, it has a synchronous section (which is triggered as part of the event loop algorithm). Steps in that section are marked with ⌛.
Set the media element's show poster flag to false.
If the media element's readyState
is HAVE_NOTHING
, abort these steps.
If the element's seeking
IDL attribute is true,
then another instance of this algorithm is already running. Abort that other instance of the
algorithm without waiting for the step that it is running to complete.
Set the seeking
IDL attribute to true.
If the seek was in response to a DOM method call or setting of an IDL attribute, then continue the script. The remainder of these steps must be run in parallel. With the exception of the steps marked with ⌛, they could be aborted at any time by another instance of this algorithm being invoked.
If the new playback position is later than the end of the media resource, then let it be the end of the media resource instead.
If the new playback position is less than the earliest possible position, let it be that position instead.
If the (possibly now changed) new playback position is not in one of
the ranges given in the seekable
attribute, then let it
be the position in one of the ranges given in the seekable
attribute that is the nearest to the new
playback position. If two positions both satisfy that constraint (i.e. the new playback position is exactly in the middle between two ranges in the seekable
attribute) then use the position that is closest to
the current playback position. If there are no ranges given in the seekable
attribute then set the seeking
IDL attribute to false and abort these steps.
If the approximate-for-speed flag is set, adjust the new playback position to a value that will allow for playback to resume promptly. If new playback position before this step is before current playback position, then the adjusted new playback position must also be before the current playback position. Similarly, if the new playback position before this step is after current playback position, then the adjusted new playback position must also be after the current playback position.
For example, the user agent could snap to a nearby key frame, so that it doesn't have to spend time decoding then discarding intermediate frames before resuming playback.
Queue a task to fire a simple event named seeking
at the element.
Set the current playback position to the new playback position.
If the media element was potentially playing
immediately before it started seeking, but seeking caused its readyState
attribute to change to a value lower than HAVE_FUTURE_DATA
, then a waiting
event will be
fired at the element.
This step sets the current playback position, and thus can immediately trigger other conditions, such as the rules regarding when playback "reaches the end of the media resource" (part of the logic that handles looping), even before the user agent is actually able to render the media data for that position (as determined in the next step).
The currentTime
attribute returns
the official playback position, not the current playback position, and
therefore gets updated before script execution, separate from this algorithm.
Wait until the user agent has established whether or not the media data for the new playback position is available, and, if it is, until it has decoded enough data to play back that position.
Await a stable state. The synchronous section consists of all the remaining steps of this algorithm. (Steps in the synchronous section are marked with ⌛.)
⌛ Set the seeking
IDL attribute to
false.
⌛ Run the time marches on steps.
⌛ Queue a task to fire a simple event
named timeupdate
at the element.
⌛ Queue a task to fire a simple event named seeked
at the element.
The seekable
attribute must return a new
static normalised TimeRanges
object that represents the ranges of the
media resource, if any, that the user agent is able to seek to, at the time the
attribute is evaluated.
If the user agent can seek to anywhere in the media resource, e.g.
because it is a simple movie file and the user agent and the server support HTTP Range requests,
then the attribute would return an object with one range, whose start is the time of the first
frame (the earliest possible position, typically zero), and whose end is the same as
the time of the first frame plus the duration
attribute's
value (which would equal the time of the last frame, and might be positive Infinity).
The range might be continuously changing, e.g. if the user agent is buffering a sliding window on an infinite stream. This is the behaviour seen with DVRs viewing live TV, for instance.
User agents should adopt adopt a very liberal and optimistic view of what is seekable. User agents should also buffer recent content where possible to enable seeking to be fast.
For instance, consider a large video file served on an HTTP server without support for HTTP Range requests. A browser could implement this by only buffering the current frame and data obtained for subsequent frames, never allow seeking, except for seeking to the very start by restarting the playback. However, this would be a poor implementation. A high quality implementation would buffer the last few minutes of content (or more, if sufficient storage space is available), allowing the user to jump back and rewatch something surprising without any latency, and would in addition allow arbitrary seeking by reloading the file from the start if necessary, which would be slower but still more convenient than having to literally restart the video and watch it all the way through just to get to an earlier unbuffered spot.
Media resources might be internally scripted or interactive. Thus, a media element could play in a non-linear fashion. If this happens, the user agent must act as if the algorithm for seeking was used whenever the current playback position changes in a discontinuous fashion (so that the relevant events fire). If the media element has a current media controller, then the user agent must seek the media controller appropriately instead.
A media resource can have multiple embedded audio and video tracks. For example, in addition to the primary video and audio tracks, a media resource could have foreign-language dubbed dialogues, director's commentaries, audio descriptions, alternative angles, or sign-language overlays.
audioTracks
Returns an AudioTrackList
object representing the audio tracks available in the
media resource.
videoTracks
Returns a VideoTrackList
object representing the video tracks available in the
media resource.
The audioTracks
attribute of a
media element must return a live AudioTrackList
object
representing the audio tracks available in the media element's media
resource.
The videoTracks
attribute of a
media element must return a live VideoTrackList
object
representing the video tracks available in the media element's media
resource.
There are only ever one AudioTrackList
object and one
VideoTrackList
object per media element, even if another media
resource is loaded into the element: the objects are reused. (The AudioTrack
and VideoTrack
objects are not, though.)
In this example, a script defines a function that takes a URL to a video and a reference to an element where the video is to be placed. That function then tries to load the video, and, once it is loaded, checks to see if there is a sign-language track available. If there is, it also displays that track. Both tracks are just placed in the given container; it's assumed that styles have been applied to make this work in a pretty way!
<script> function loadVideo(url, container) { var controller = new MediaController(); var video = document.createElement('video'); video.src = url; video.autoplay = true; video.controls = true; video.controller = controller; container.appendChild(video); video.onloadedmetadata = function (event) { for (var i = 0; i < video.videoTracks.length; i += 1) { if (video.videoTracks[i].kind == 'sign') { var sign = document.createElement('video'); sign.src = url + '#track=' + video.videoTracks[i].id; sign.autoplay = true; sign.controller = controller; container.appendChild(sign); return; } } }; } </script>
AudioTrackList
and VideoTrackList
objectsThe AudioTrackList
and VideoTrackList
interfaces are used by
attributes defined in the previous section.
interface AudioTrackList : EventTarget { readonly attribute unsigned long length; getter AudioTrack (unsigned long index); AudioTrack? getTrackById(DOMString id); attribute EventHandler onchange; attribute EventHandler onaddtrack; attribute EventHandler onremovetrack; }; interface AudioTrack { readonly attribute DOMString id; readonly attribute DOMString kind; readonly attribute DOMString label; readonly attribute DOMString language; attribute boolean enabled; }; interface VideoTrackList : EventTarget { readonly attribute unsigned long length; getter VideoTrack (unsigned long index); VideoTrack? getTrackById(DOMString id); readonly attribute long selectedIndex; attribute EventHandler onchange; attribute EventHandler onaddtrack; attribute EventHandler onremovetrack; }; interface VideoTrack { readonly attribute DOMString id; readonly attribute DOMString kind; readonly attribute DOMString label; readonly attribute DOMString language; attribute boolean selected; };
audioTracks
. length
videoTracks
. length
Returns the number of tracks in the list.
audioTracks
[index]videoTracks
[index]Returns the specified AudioTrack
or VideoTrack
object.
audioTracks
. getTrackById
( id )videoTracks
. getTrackById
( id )Returns the AudioTrack
or VideoTrack
object with the given identifier, or null if no track has that identifier.
id
id
Returns the ID of the given track. This is the ID that can be used with a fragment identifier
if the format supports the Media Fragments URI syntax, and that can be used with
the getTrackById()
method. [MEDIAFRAG]
kind
kind
Returns the category the given track falls into. The possible track categories are given below.
label
label
Returns the label of the given track, if known, or the empty string otherwise.
language
language
Returns the language of the given track, if known, or the empty string otherwise.
enabled
[ = value ]Returns true if the given track is active, and false otherwise.
Can be set, to change whether the track is enabled or not. If multiple audio tracks are enabled simultaneously, they are mixed.
videoTracks
. selectedIndex
Returns the index of the currently selected track, if any, or −1 otherwise.
selected
[ = value ]Returns true if the given track is active, and false otherwise.
Can be set, to change whether the track is selected or not. Either zero or one video track is selected; selecting a new track while a previous one is selected will unselect the previous one.
An AudioTrackList
object represents a dynamic list of zero or more audio tracks,
of which zero or more can be enabled at a time. Each audio track is represented by an
AudioTrack
object.
A VideoTrackList
object represents a dynamic list of zero or more video tracks, of
which zero or one can be selected at a time. Each video track is represented by a
VideoTrack
object.
Tracks in AudioTrackList
and VideoTrackList
objects must be
consistently ordered. If the media resource is in a format that defines an order,
then that order must be used; otherwise, the order must be the relative order in which the tracks
are declared in the media resource. The order used is called the natural order
of the list.
Each track in one of these objects thus has an index; the first has the index 0, and each subsequent track is numbered one higher than the previous one. If a media resource dynamically adds or removes audio or video tracks, then the indices of the tracks will change dynamically. If the media resource changes entirely, then all the previous tracks will be removed and replaced with new tracks.
The AudioTrackList.length
and VideoTrackList.length
attributes must return
the number of tracks represented by their objects at the time of getting.
The supported property indices of AudioTrackList
and
VideoTrackList
objects at any instant are the numbers from zero to the number of
tracks represented by the respective object minus one, if any tracks are represented. If an
AudioTrackList
or VideoTrackList
object represents no tracks, it has no
supported property indices.
To determine the value of an indexed property for a given index index in an AudioTrackList
or VideoTrackList
object list, the user agent must return the AudioTrack
or
VideoTrack
object that represents the indexth track in list.
The AudioTrackList.getTrackById(id)
and VideoTrackList.getTrackById(id)
methods must return the first AudioTrack
or
VideoTrack
object (respectively) in the AudioTrackList
or
VideoTrackList
object (respectively) whose identifier is equal to the value of the
id argument (in the natural order of the list, as defined above). When no
tracks match the given argument, the methods must return null.
The AudioTrack
and VideoTrack
objects represent specific tracks of a
media resource. Each track can have an identifier, category, label, and language.
These aspects of a track are permanent for the lifetime of the track; even if a track is removed
from a media resource's AudioTrackList
or VideoTrackList
objects, those aspects do not change.
In addition, AudioTrack
objects can each be enabled or disabled; this is the audio
track's enabled state. When an AudioTrack
is created, its enabled state
must be set to false (disabled). The resource fetch
algorithm can override this.
Similarly, a single VideoTrack
object per VideoTrackList
object can
be selected, this is the video track's selection state. When a VideoTrack
is
created, its selection state must be set to false (not selected). The resource fetch algorithm can override this.
The AudioTrack.id
and VideoTrack.id
attributes must return the identifier
of the track, if it has one, or the empty string otherwise. If the media resource is
in a format that supports the Media Fragments URI fragment identifier syntax, the
identifier returned for a particular track must be the same identifier that would enable the track
if used as the name of a track in the track dimension of such a fragment identifier. [MEDIAFRAG] [INBAND]
For example, in Ogg files, this would be the Name header field of the track. [OGGSKELETONHEADERS]
The AudioTrack.kind
and VideoTrack.kind
attributes must return the category
of the track, if it has one, or the empty string otherwise.
The category of a track is the string given in the first column of the table below that is the
most appropriate for the track based on the definitions in the table's second and third columns,
as determined by the metadata included in the track in the media resource. The cell
in the third column of a row says what the category given in the cell in the first column of that
row applies to; a category is only appropriate for an audio track if it applies to audio tracks,
and a category is only appropriate for video tracks if it applies to video tracks. Categories must
only be returned for AudioTrack
objects if they are appropriate for audio, and must
only be returned for VideoTrack
objects if they are appropriate for video.
For Ogg files, the Role header field of the track gives the relevant metadata. For DASH media
resources, the Role
element conveys the information. For WebM, only the
FlagDefault
element currently maps to a value. The Sourcing In-band
Media Resource Tracks from Media Containers into HTML specification has further details.
[OGGSKELETONHEADERS] [DASH] [WEBMCG] [INBAND]
Category | Definition | Applies to... | Examples |
---|---|---|---|
"alternative "
| A possible alternative to the main track, e.g. a different take of a song (audio), or a different angle (video). | Audio and video. | Ogg: "audio/alternate" or "video/alternate"; DASH: "alternate" without "main" and "commentary" roles, and, for audio, without the "dub" role (other roles ignored). |
"captions "
| A version of the main video track with captions burnt in. (For legacy content; new content would use text tracks.) | Video only. | DASH: "caption" and "main" roles together (other roles ignored). |
"descriptions "
| An audio description of a video track. | Audio only. | Ogg: "audio/audiodesc". |
"main "
| The primary audio or video track. | Audio and video. | Ogg: "audio/main" or "video/main"; WebM: the "FlagDefault" element is set; DASH: "main" role without "caption", "subtitle", and "dub" roles (other roles ignored). |
"main-desc "
| The primary audio track, mixed with audio descriptions. | Audio only. | AC3 audio in MPEG-2 TS: bsmod=2 and full_svc=1. |
"sign "
| A sign-language interpretation of an audio track. | Video only. | Ogg: "video/sign". |
"subtitles "
| A version of the main video track with subtitles burnt in. (For legacy content; new content would use text tracks.) | Video only. | DASH: "subtitle" and "main" roles together (other roles ignored). |
"translation "
| A translated version of the main audio track. | Audio only. | Ogg: "audio/dub". DASH: "dub" and "main" roles together (other roles ignored). |
"commentary "
| Commentary on the primary audio or video track, e.g. a director's commentary. | Audio and video. | DASH: "commentary" role without "main" role (other roles ignored). |
" " (empty string)
| No explicit kind, or the kind given by the track's metadata is not recognised by the user agent. | Audio and video. |
The AudioTrack.label
and VideoTrack.label
attributes must return the label
of the track, if it has one, or the empty string otherwise. [INBAND]
The AudioTrack.language
and VideoTrack.language
attributes must return the
BCP 47 language tag of the language of the track, if it has one, or the empty string otherwise. If
the user agent is not able to express that language as a BCP 47 language tag (for example because
the language information in the media resource's format is a free-form string without
a defined interpretation), then the method must return the empty string, as if the track had no
language. [INBAND]
The AudioTrack.enabled
attribute, on
getting, must return true if the track is currently enabled, and false otherwise. On setting, it
must enable the track if the new value is true, and disable it otherwise. (If the track is no
longer in an AudioTrackList
object, then the track being enabled or disabled has no
effect beyond changing the value of the attribute on the AudioTrack
object.)
Whenever an audio track in an AudioTrackList
that was
disabled is enabled, and whenever one that was enabled is disabled, the user agent must
queue a task to fire a simple event named change
at the AudioTrackList
object.
An audio track that has no data for a particular position on the media timeline, or that does not exist at that position, must be interpreted as being silent at that point on the timeline.
The VideoTrackList.selectedIndex
attribute
must return the index of the currently selected track, if any. If the VideoTrackList
object does not currently represent any tracks, or if none of the tracks are selected, it must
instead return −1.
The VideoTrack.selected
attribute, on
getting, must return true if the track is currently selected, and false otherwise. On setting, it
must select the track if the new value is true, and unselect it otherwise. If the track is in a
VideoTrackList
, then all the other VideoTrack
objects in that list must
be unselected. (If the track is no longer in a VideoTrackList
object, then the track
being selected or unselected has no effect beyond changing the value of the attribute on the
VideoTrack
object.)
Whenever a track in a VideoTrackList
that was previously
not selected is selected, and whenever the selected track in a VideoTrackList
is
unselected without a new track being selected in its stead, the user agent must queue a task to fire a simple
event named change
at the
VideoTrackList
object. This task must be queued before the task that fires
the resize
event, if any.
A video track that has no data for a particular position on the media timeline must be interpreted as being fully transparent black at that point on the timeline, with the same dimensions as the last frame before that position, or, if the position is before all the data for that track, the same dimensions as the first frame for that track. A track that does not exist at all at the current position must be treated as if it existed but had no data.
For instance, if a video has a track that is only introduced after one hour of playback, and the user selects that track then goes back to the start, then the user agent will act as if that track started at the start of the media resource but was simply transparent until one hour in.
The following are the event handlers (and their corresponding event handler event types) that must be supported, as event handler IDL attributes,
by all objects implementing the AudioTrackList
and VideoTrackList
interfaces:
Event handler | Event handler event type |
---|---|
onchange | change
|
onaddtrack | addtrack
|
onremovetrack | removetrack
|
The audioTracks
and videoTracks
attributes allow scripts to select which track
should play, but it is also possible to select specific tracks declaratively, by specifying
particular tracks in the fragment identifier of the URL of the media
resource. The format of the fragment identifier depends on the MIME type of
the media resource. [RFC2046] [URL]
In this example, a video that uses a format that supports the Media Fragments URI fragment identifier syntax is embedded in such a way that the alternative angles labeled "Alternative" are enabled instead of the default video track. [MEDIAFRAG]
<video src="myvideo#track=Alternative"></video>
Each media element can have a MediaController
. A
MediaController
is an object that coordinates the playback of multiple media elements, for instance so that a sign-language interpreter
track can be overlaid on a video track, with the two being kept synchronised.
By default, a media element has no MediaController
. An implicit
MediaController
can be assigned using the mediagroup
content attribute. An explicit
MediaController
can be assigned directly using the controller
IDL attribute.
Media elements with a MediaController
are said
to be slaved to their controller. The MediaController
modifies the playback
rate and the playback volume of each of the media elements
slaved to it, and ensures that when any of its slaved media
elements unexpectedly stall, the others are stopped at the same time.
When a media element is slaved to a MediaController
, its playback
rate is fixed to that of the other tracks in the same MediaController
, and any
looping is disabled.
enum MediaControllerPlaybackState { "waiting", "playing", "ended" }; [Constructor] interface MediaController : EventTarget { readonly attribute unsigned short readyState; // uses HTMLMediaElement.readyState's values readonly attribute TimeRanges buffered; readonly attribute TimeRanges seekable; readonly attribute unrestricted double duration; attribute double currentTime; readonly attribute boolean paused; readonly attribute MediaControllerPlaybackState playbackState; readonly attribute TimeRanges played; void pause(); void unpause(); void play(); // calls play() on all media elements as well attribute double defaultPlaybackRate; attribute double playbackRate; attribute double volume; attribute boolean muted; attribute EventHandler onemptied; attribute EventHandler onloadedmetadata; attribute EventHandler onloadeddata; attribute EventHandler oncanplay; attribute EventHandler oncanplaythrough; attribute EventHandler onplaying; attribute EventHandler onended; attribute EventHandler onwaiting; attribute EventHandler ondurationchange; attribute EventHandler ontimeupdate; attribute EventHandler onplay; attribute EventHandler onpause; attribute EventHandler onratechange; attribute EventHandler onvolumechange; };
MediaController
()Returns a new MediaController
object.
controller
[ = controller ]Returns the current MediaController
for the media element, if any;
returns null otherwise.
Can be set, to set an explicit MediaController
. Doing so removes the mediagroup
attribute, if any.
readyState
Returns the state that the MediaController
was in the last time it fired events
as a result of reporting the controller state.
The values of this attribute are the same as for the readyState
attribute of media
elements.
buffered
Returns a TimeRanges
object that represents the intersection of the time ranges
for which the user agent has all relevant media data for all the slaved media elements.
seekable
Returns a TimeRanges
object that represents the intersection of the time ranges
into which the user agent can seek for all the slaved media
elements.
duration
Returns the difference between the earliest playable moment and the latest playable moment (not considering whether the data in question is actually buffered or directly seekable, but not including time in the future for infinite streams). Will return zero if there is no media.
currentTime
[ = value ]Returns the current playback position, in seconds, as a position between zero
time and the current duration
.
Can be set, to seek to the given time.
paused
Returns true if playback is paused; false otherwise. When this attribute is true, any media element slaved to this controller will be stopped.
playbackState
Returns the state that the MediaController
was in the last time it fired events
as a result of reporting the controller state.
The value of this attribute is either "playing
", indicating that the media is actively
playing, "ended
", indicating that the media is
not playing because playback has reached the end of all the slaved media elements,
or "waiting
", indicating that the media is not
playing for some other reason (e.g. the MediaController
is paused).
pause
()Sets the paused
attribute to true.
unpause
()Sets the paused
attribute to false.
play
()Sets the paused
attribute to false and
invokes the play()
method of each slaved media element.
played
Returns a TimeRanges
object that represents the union of the time ranges in all
the slaved media elements that have been played.
defaultPlaybackRate
[ = value ]Returns the default rate of playback.
Can be set, to change the default rate of playback.
This default rate has no direct effect on playback, but if the user switches to a
fast-forward mode, when they return to the normal playback mode, it is expected that rate of
playback (playbackRate
) will be returned
to this default rate.
playbackRate
[ = value ]Returns the current rate of playback.
Can be set, to change the rate of playback.
volume
[ = value ]Returns the current playback volume multiplier, as a number in the range 0.0 to 1.0, where 0.0 is the quietest and 1.0 the loudest.
Can be set, to change the volume multiplier.
Throws an IndexSizeError
exception if the new value is not in the range 0.0 .. 1.0.
muted
[ = value ]Returns true if all audio is muted (regardless of other attributes either on the controller or on any media elements slaved to this controller), and false otherwise.
Can be set, to change whether the audio is muted or not.
A media element can have a current media controller, which is a
MediaController
object. When a media element is created without a mediagroup
attribute, it does not have a current media
controller. (If it is created with such an attribute, then that attribute
initialises the current media controller, as defined below.)
The slaved media elements of a MediaController
are the media elements whose current media controller is that
MediaController
. All the slaved media elements of a
MediaController
must use the same clock for their definition of their media
timeline's unit time. When the user agent is required to act on each slaved media element in turn, they must be processed in the order that they
were last associated with the MediaController
.
The controller
attribute on a media
element, on getting, must return the element's current media controller, if
any, or null otherwise. On setting, the user agent must run the following steps:
Let m be the media element in question.
Let old controller be m's current media controller, if it currently has one, and null otherwise.
Let new controller be null.
Let m have no current media controller, if it currently has one.
Remove the element's mediagroup
content
attribute, if any.
If the new value is null, then jump to the update controllers step below.
Let m's current media controller be the new value.
Let new controller be m's current media controller.
Bring the media element up to speed with its new media controller.
Update controllers: If old controller and new controller are the same (whether both null or both the same controller) then abort these steps.
If old controller is not null and still has one or more slaved media elements, then report the controller state for old controller.
If new controller is not null, then report the controller state for new controller.
The MediaController()
constructor, when
invoked, must return a newly created MediaController
object.
The readyState
attribute must
return the value to which it was most recently set. When the MediaController
object
is created, the attribute must be set to the value 0 (HAVE_NOTHING
). The value is updated by the report the
controller state algorithm below.
The seekable
attribute must return
a new static normalised TimeRanges
object that represents the
intersection of the ranges of the media resources of the
slaved media elements that the user agent is able to seek to, at the time the
attribute is evaluated.
The buffered
attribute must return
a new static normalised TimeRanges
object that represents the
intersection of the ranges of the media resources of the
slaved media elements that the user agent has buffered, at the time the attribute is
evaluated. Users agents must accurately determine the ranges available, even for media streams
where this can only be determined by tedious inspection.
The duration
attribute must return
the media controller duration.
Every 15 to 250ms, or whenever the MediaController
's media controller
duration changes, whichever happens least often, the user agent must queue a
task to fire a simple event named durationchange
at the
MediaController
. If the MediaController
's media controller
duration decreases such that the media controller position is greater than the
media controller duration, the user agent must immediately seek the media
controller to media controller duration.
The currentTime
attribute must
return the media controller position on getting, and on setting must seek the
media controller to the new value.
Every 15 to 250ms, or whenever the MediaController
's media controller
position changes, whichever happens least often, the user agent must queue a
task to fire a simple event named timeupdate
at the
MediaController
.
When a MediaController
is created it is a playing media controller. It
can be changed into a paused media controller and back either via the user agent's user
interface (when the element is exposing a user
interface to the user) or by script using the APIs defined in this section (see below).
The paused
attribute must return
true if the MediaController
object is a paused media controller, and
false otherwise.
When the pause()
method is invoked,
if the MediaController
is a playing media controller then the user agent
must change the MediaController
into a paused media controller,
queue a task to fire a simple event named pause
at the MediaController
, and then
report the controller state of the MediaController
.
When the unpause()
method is
invoked, if the MediaController
is a paused media controller, the user
agent must change the MediaController
into a playing media controller,
queue a task to fire a simple event named play
at the MediaController
, and then
report the controller state of the MediaController
.
When the play()
method is invoked, the
user agent must invoke the play()
method of each slaved media element in turn, and then invoke the unpause
method of the MediaController
.
The playbackState
attribute
must return the value to which it was most recently set. When the MediaController
object is created, the attribute must be set to the value "waiting
". The value is updated by the report the
controller state algorithm below.
The played
attribute must return a
new static normalised TimeRanges
object that represents the union of the
ranges of points on the media timelines of the media resources of the slaved media elements that the
user agent has so far reached through the usual monotonic increase of their current playback positions during normal playback, at the time the
attribute is evaluated.
A MediaController
has a media controller default playback rate and a
media controller playback rate, which must both be set to 1.0 when the
MediaController
object is created.
The defaultPlaybackRate
attribute, on getting, must return the MediaController
's media controller
default playback rate, and on setting, must set the MediaController
's
media controller default playback rate to the new value, then queue a
task to fire a simple event named ratechange
at the
MediaController
.
The playbackRate
attribute, on
getting, must return the MediaController
's media controller playback
rate, and on setting, must set the MediaController
's media controller
playback rate to the new value, then queue a task to fire a simple
event named ratechange
at the
MediaController
.
A MediaController
has a media controller volume multiplier, which must
be set to 1.0 when the MediaController
object is created, and a media controller
mute override, much must initially be false.
The volume
attribute, on getting,
must return the MediaController
's media controller volume multiplier,
and on setting, if the new value is in the range 0.0 to 1.0 inclusive, must set the
MediaController
's media controller volume multiplier to the new value
and queue a task to fire a simple event named volumechange
at the
MediaController
. If the new value is outside the range 0.0 to 1.0 inclusive, then, on
setting, an IndexSizeError
exception must be thrown instead.
The muted
attribute, on getting, must
return the MediaController
's media controller mute override, and on
setting, must set the MediaController
's media controller mute override
to the new value and queue a task to fire a simple event named volumechange
at the
MediaController
.
The media resources of all the slaved media
elements of a MediaController
have a defined temporal relationship which
provides relative offsets between the zero time of each such media resource: for
media resources with a timeline offset, their
relative offsets are the difference between their timeline offset; the zero times of
all the media resources without a timeline offset
are not offset from each other (i.e. the origins of their timelines are cotemporal); and finally,
the zero time of the media resource with the earliest timeline offset
(if any) is not offset from the zero times of the media
resources without a timeline offset (i.e. the origins of media resources without a timeline offset are further cotemporal
with the earliest defined point on the timeline of the media resource with the
earliest timeline offset).
The media resource end position of a media resource in a media element is defined as follows: if the media resource has a finite and known duration, the media resource end position is the duration of the media resource's timeline (the last defined position on that timeline); otherwise, the media resource's duration is infinite or unknown, and the media resource end position is the time of the last frame of media data currently available for that media resource.
Each MediaController
also has its own defined timeline. On this timeline, all the
media resources of all the slaved media elements
of the MediaController
are temporally aligned according to their defined offsets. The
media controller duration of that MediaController
is the time from the
earliest earliest possible position, relative to this MediaController
timeline, of any of the media resources of the slaved
media elements of the MediaController
, to the time of the latest media
resource end position of the media resources of the
slaved media elements of the MediaController
, again relative to this
MediaController
timeline.
Each MediaController
has a media controller position. This is the time
on the MediaController
's timeline at which the user agent is trying to play the
slaved media elements. When a MediaController
is created, its
media controller position is initially zero.
When the user agent is to bring a media element up to speed with its new media controller, it must seek that media element to the
MediaController
's media controller position relative to the media
element's timeline.
When the user agent is to seek the media controller to a particular new playback position, it must follow these steps:
If the new playback position is less than zero, then set it to zero.
If the new playback position is greater than the media controller duration, then set it to the media controller duration.
Set the media controller position to the new playback position.
Seek each slaved media element to the new playback position relative to the media element timeline.
A MediaController
is a restrained media controller if the
MediaController
is a playing media controller, but either at least one
of its slaved media elements whose autoplaying flag is true still has
its paused
attribute set to true, or, all of its
slaved media elements have their paused
attribute set to true.
A MediaController
is a blocked media controller if the
MediaController
is a paused media controller, or if any of its
slaved media elements are blocked media
elements, or if any of its slaved media elements whose autoplaying
flag is true still have their paused
attribute set to
true, or if all of its slaved media elements have their paused
attribute set to true.
A media element is blocked on its media controller if the
MediaController
is a blocked media controller, or if its media
controller position is either before the media resource's earliest
possible position relative to the MediaController
's timeline or after the end
of the media resource relative to the MediaController
's timeline.
When a MediaController
is not a blocked media
controller and it has at least one slaved media
element whose Document
is a fully active Document
,
the MediaController
's media controller position must increase
monotonically at media controller playback rate units of time on the
MediaController
's timeline per unit time of the clock used by its slaved media
elements.
When the zero point on the timeline of a MediaController
moves relative to the
timelines of the slaved media elements by a time difference ΔT, the MediaController
's media controller
position must be decremented by ΔT.
In some situations, e.g. when playing back a live stream without buffering anything, the media controller position would increase monotonically as described above at the same rate as the ΔT described in the previous paragraph decreases it, with the end result that for all intents and purposes, the media controller position would appear to remain constant (probably with the value 0).
A MediaController
has a most recently reported readiness state, which
is a number from 0 to 4 derived from the numbers used for the media element readyState
attribute, and a most recently reported
playback state, which is either playing, waiting, or ended.
When a MediaController
is created, its most recently reported readiness
state must be set to 0, and its most recently reported playback state must be
set to waiting.
When a user agent is required to report the controller state for a
MediaController
, the user agent must run the following steps:
If the MediaController
has no slaved media elements, let new readiness state be 0.
Otherwise, let it have the lowest value of the readyState
IDL attributes of all of its slaved media
elements.
If the MediaController
's most recently reported readiness state is
less than the new readiness state, then run these substeps:
Let next state be the MediaController
's most
recently reported readiness state.
Loop: Increment next state by one.
Queue a task to run the following steps:
Set the MediaController
's readyState
attribute to the value next state.
Fire a simple event at the MediaController
object, whose
name is the event name corresponding to the value of next state given in
the table below.
If next state is less than new readiness state, then return to the step labeled loop.
Otherwise, if the MediaController
's most recently reported readiness
state is greater than new readiness state then queue a
task to fire a simple event at the MediaController
object,
whose name is the event name corresponding to the value of new readiness
state given in the table below.
Value of new readiness state | Event name |
---|---|
0 | emptied
|
1 | loadedmetadata
|
2 | loadeddata
|
3 | canplay
|
4 | canplaythrough
|
Let the MediaController
's most recently reported readiness state
be new readiness state.
Initialise new playback state by setting it to the state given for the first matching condition from the following list:
MediaController
has no slaved media elementsMediaController
's slaved media elements have
ended playback and the media controller playback rate is positive or
zeroMediaController
is a blocked media controllerIf the MediaController
's most recently reported playback state
is not equal to new playback state and the new playback
state is ended, then queue a task that, if the
MediaController
object is a playing media controller, and all of the
MediaController
's slaved media elements have still ended
playback, and the media controller playback rate is still positive or zero,
changes the MediaController
object to a paused media controller and
then fires a simple event named pause
at the MediaController
object.
If the MediaController
's most recently reported playback state is
not equal to new playback state then queue a task to run the
following steps:
Set the MediaController
's playbackState
attribute to the value given in
the second column of the row of the following table whose first column contains the new playback state.
Fire a simple event at the MediaController
object, whose name
is the value given in the third column of the row of the following table whose first column
contains the new playback state.
New playback state | New value for playbackState
| Event name |
---|---|---|
playing | "playing "
| playing
|
waiting | "waiting "
| waiting
|
ended | "ended "
| ended
|
Let the MediaController
's most recently reported playback state
be new playback state.
The following are the event handlers (and their corresponding event handler event types) that must be supported, as event handler IDL attributes,
by all objects implementing the MediaController
interface:
Event handler | Event handler event type |
---|---|
onemptied | emptied
|
onloadedmetadata | loadedmetadata
|
onloadeddata | loadeddata
|
oncanplay | canplay
|
oncanplaythrough | canplaythrough
|
onplaying | playing
|
onended | ended
|
onwaiting | waiting
|
ondurationchange | durationchange
|
ontimeupdate | timeupdate
|
onplay | play
|
onpause | pause
|
onratechange | ratechange
|
onvolumechange | volumechange
|
The task source for the tasks listed in this section is the DOM manipulation task source.
The mediagroup
content attribute on media elements can be used to link multiple media elements together by implicitly creating a MediaController
. The
value is text; media elements with the same value are
automatically linked by the user agent.
When a media element is created with a mediagroup
attribute, and when a media element's
mediagroup
attribute is set, changed, or removed, the
user agent must run the following steps:
Let m be the media element in question.
Let old controller be m's current media controller, if it currently has one, and null otherwise.
Let new controller be null.
Let m have no current media controller, if it currently has one.
If m's mediagroup
attribute
is being removed, then jump to the update controllers step below.
If there is another media element whose Document
is the same as
m's node document (even if one or both of these elements are not
actually in the Document
), and which
also has a mediagroup
attribute, and whose mediagroup
attribute has the same value as the new value of
m's mediagroup
attribute, then
let controller be that media element's current media
controller.
Otherwise, let controller be a newly created
MediaController
.
Let m's current media controller be controller.
Let new controller be m's current media controller.
Bring the media element up to speed with its new media controller.
Update controllers: If old controller and new controller are the same (whether both null or both the same controller) then abort these steps.
If old controller is not null and still has one or more slaved media elements, then report the controller state for old controller.
If new controller is not null, then report the controller state for new controller.
The mediaGroup
IDL attribute on media elements must reflect the mediagroup
content attribute.
Multiple media elements referencing the same media
resource will share a single network request. This can be used to efficiently play two
(video) tracks from the same media resource in two different places on the screen.
Used with the mediagroup
attribute, these elements can
also be kept synchronised.
In this example, a sign-languge interpreter track from a movie file is overlaid on the primary
video track of that same video file using two video
elements, some CSS, and an
implicit MediaController
:
<article> <style scoped> div { margin: 1em auto; position: relative; width: 400px; height: 300px; } video { position; absolute; bottom: 0; right: 0; } video:first-child { width: 100%; height: 100%; } video:last-child { width: 30%; } </style> <div> <video src="movie.vid#track=Video&track=English" autoplay controls mediagroup=movie></video> <video src="movie.vid#track=sign" autoplay mediagroup=movie></video> </div> </article>
A media element can have a group of associated text tracks, known as the media element's list of text tracks. The text tracks are sorted as follows:
track
element
children of the media element, in tree order.addTextTrack()
method, in the order they were added, oldest
first.A text track consists of:
This decides how the track is handled by the user agent. The kind is represented by a string. The possible strings are:
subtitles
captions
descriptions
chapters
metadata
The kind of track can change dynamically, in the case of
a text track corresponding to a track
element.
This is a human-readable string intended to identify the track for the user.
The label of a track can change dynamically, in the
case of a text track corresponding to a track
element.
When a text track label is the empty string, the user agent should automatically generate an appropriate label from the text track's other properties (e.g. the kind of text track and the text track's language) for use in its user interface. This automatically-generated label is not exposed in the API.
This is a string extracted from the media resource specifically for in-band metadata tracks to enable such tracks to be dispatched to different scripts in the document.
For example, a traditional TV station broadcast streamed on the Web and augmented with Web-specific interactive features could include text tracks with metadata for ad targeting, trivia game data during game shows, player states during sports games, recipe information during food programs, and so forth. As each program starts and ends, new tracks might be added or removed from the stream, and as each one is added, the user agent could bind them to dedicated script modules using the value of this attribute.
Other than for in-band metadata text tracks, the in-band metadata track dispatch type is the empty string. How this value is populated for different media formats is described in steps to expose a media-resource-specific text track.
This is a string (a BCP 47 language tag) representing the language of the text track's cues. [BCP47]
The language of a text track can change dynamically,
in the case of a text track corresponding to a track
element.
One of the following:
Indicates that the text track's cues have not been obtained.
Indicates that the text track is loading and there have been no fatal errors encountered so far. Further cues might still be added to the track by the parser.
Indicates that the text track has been loaded with no fatal errors.
Indicates that the text track was enabled, but when the user agent attempted to obtain it, this failed in some way (e.g. URL could not be resolved, network error, unknown text track format). Some or all of the cues are likely missing and will not be obtained.
The readiness state of a text track changes dynamically as the track is obtained.
One of the following:
Indicates that the text track is not active. Other than for the purposes of exposing the track in the DOM, the user agent is ignoring the text track. No cues are active, no events are fired, and the user agent will not attempt to obtain the track's cues.
Indicates that the text track is active, but that the user agent is not actively displaying the cues. If no attempt has yet been made to obtain the track's cues, the user agent will perform such an attempt momentarily. The user agent is maintaining a list of which cues are active, and events are being fired accordingly.
Indicates that the text track is active. If no attempt has yet been made to obtain the
track's cues, the user agent will perform such an attempt momentarily. The user agent is
maintaining a list of which cues are active, and events are being fired accordingly. In
addition, for text tracks whose kind is subtitles
or captions
, the cues are being overlaid on the video
as appropriate; for text tracks whose kind is descriptions
, the user agent is making the
cues available to the user in a non-visual fashion; and for text tracks whose kind is chapters
, the user agent is making available to
the user a mechanism by which the user can navigate to any point in the media
resource by selecting a cue.
A list of text track cues, along with rules for updating the text track rendering. For example, for WebVTT, the rules for updating the display of WebVTT text tracks. [WEBVTT]
The list of cues of a text track can change dynamically, either because the text track has not yet been loaded or is still loading, or due to DOM manipulation.
Each text track has a corresponding TextTrack
object.
Each media element has a list of pending text tracks, which must initially be empty, a blocked-on-parser flag, which must initially be false, and a did-perform-automatic-track-selection flag, which must also initially be false.
When the user agent is required to populate the list of pending text tracks of a media element, the user agent must add to the element's list of pending text tracks each text track in the element's list of text tracks whose text track mode is not disabled and whose text track readiness state is loading.
Whenever a track
element's parent node changes, the user agent must remove the
corresponding text track from any list of pending text tracks that it is
in.
Whenever a text track's text track readiness state changes to either loaded or failed to load, the user agent must remove it from any list of pending text tracks that it is in.
When a media element is created by an HTML parser or XML parser, the user agent must set the element's blocked-on-parser flag to true. When a media element is popped off the stack of open elements of an HTML parser or XML parser, the user agent must honor user preferences for automatic text track selection, populate the list of pending text tracks, and set the element's blocked-on-parser flag to false.
The text tracks of a media element are ready when both the element's list of pending text tracks is empty and the element's blocked-on-parser flag is false.
Each media element has a pending text track change notification flag, which must initially be unset.
Whenever a text track that is in a media element's list of text tracks has its text track mode change value, the user agent must run the following steps for the media element:
If the media element's pending text track change notification flag is set, abort these steps.
Set the media element's pending text track change notification flag.
Queue a task that runs the following substeps:
Unset the media element's pending text track change notification flag.
Fire a simple event named change
at
the media element's textTracks
attribute's TextTrackList
object.
If the media element's show poster flag is not set, run the time marches on steps.
The task source for the tasks listed in this section is the DOM manipulation task source.
A text track cue is the unit of time-sensitive data in a text track, corresponding for instance for subtitles and captions to the text that appears at a particular time and disappears at another time.
Each text track cue consists of:
An arbitrary string.
The time, in seconds and fractions of a second, that describes the beginning of the range of the media data to which the cue applies.
The time, in seconds and fractions of a second, that describes the end of the range of the media data to which the cue applies.
A boolean indicating whether playback of the media resource is to pause when the end of the range to which the cue applies is reached.
Additional fields, as needed for the format, including the actual data of the cue. For example, WebVTT has a text track cue writing direction and so forth. [WEBVTT]
An algorithm which, when applied to the cue, returns a string that can be used in user interfaces that use the cue as a chapter title.
The text track cue start time and text track cue end time can be negative. (The current playback position can never be negative, though, so cues entirely before time zero cannot be active.)
Each text track cue has a corresponding TextTrackCue
object (or more
specifically, an object that inherits from TextTrackCue
— for example, WebVTT
cues use the VTTCue
interface). A text track cue's in-memory
representation can be dynamically changed through this TextTrackCue
API. [WEBVTT]
A text track cue is associated with rules for updating the text track
rendering, as defined by the specification for the specific kind of text track
cue. These rules are used specifically when the object representing the cue is added to a
TextTrack
object using the addCue()
method.
In addition, each text track cue has two pieces of dynamic information:
This flag must be initially unset. The flag is used to ensure events are fired appropriately when the cue becomes active or inactive, and to make sure the right cues are rendered.
The user agent must synchronously unset this flag whenever the text track cue is
removed from its text track's text track list of cues; whenever the
text track itself is removed from its media element's list of
text tracks or has its text track mode changed to disabled; and whenever the media element's readyState
is changed back to HAVE_NOTHING
. When the flag is unset in this way for one
or more cues in text tracks that were showing prior to the relevant incident, the user agent must, after having unset
the flag for all the affected cues, apply the rules for updating the text track
rendering of those text tracks. For example, for text tracks based on WebVTT, the rules for updating the display
of WebVTT text tracks. [WEBVTT]
This is used as part of the rendering model, to keep cues in a consistent position. It must initially be empty. Whenever the text track cue active flag is unset, the user agent must empty the text track cue display state.
The text track cues of a media element's text tracks are ordered relative to each other in the text track cue order, which is determined as follows: first group the cues by their text track, with the groups being sorted in the same order as their text tracks appear in the media element's list of text tracks; then, within each group, cues must be sorted by their start time, earliest first; then, any cues with the same start time must be sorted by their end time, latest first; and finally, any cues with identical end times must be sorted in the order they were last added to their respective text track list of cues, oldest first (so e.g. for cues from a WebVTT file, that would initially be the order in which the cues were listed in the file). [WEBVTT]
A media-resource-specific text track is a text track that corresponds to data found in the media resource.
Rules for processing and rendering such data are defined by the relevant specifications, e.g. the specification of the video format if the media resource is a video. Details for some legacy formats can be found in the Sourcing In-band Media Resource Tracks from Media Containers into HTML specification. [INBAND]
When a media resource contains data that the user agent recognises and supports as being equivalent to a text track, the user agent runs the steps to expose a media-resource-specific text track with the relevant data, as follows.
Associate the relevant data with a new text track and its corresponding new
TextTrack
object. The text track is a media-resource-specific
text track.
Set the new text track's kind, label, and language based on the semantics of the relevant data, as defined by the relevant specification. If there is no label in that data, then the label must be set to the empty string.
Associate the text track list of cues with the rules for updating the text track rendering appropriate for the format in question.
If the new text track's kind is metadata
, then set the text track in-band
metadata track dispatch type as follows, based on the type of the media
resource:
CodecID
element. [WEBMCG]stsd
box of the
first stbl
box of the
first minf
box of the
first mdia
box of the
text track's trak
box in the
first moov
box
of the file be the stsd box, if any.
If the file has no stsd box, or if the stsd box has neither a mett
box nor a metx
box, then the text track
in-band metadata track dispatch type must be set to the empty string.
Otherwise, if the stsd box has a mett
box then the text
track in-band metadata track dispatch type must be set to the concatenation of the
string "mett
", a U+0020 SPACE character, and the value of the first mime_format
field of the first mett
box of the stsd
box, or the empty string if that field is absent in that box.
Otherwise, if the stsd box has no mett
box but has a metx
box then the text track in-band metadata track dispatch type
must be set to the concatenation of the string "metx
", a U+0020 SPACE
character, and the value of the first namespace
field of the first metx
box of the stsd box, or the empty string if that field is absent in
that box.
[MPEG4]
Populate the new text track's list of cues with the cues parsed so far, following the guidelines for exposing cues, and begin updating it dynamically as necessary.
Set the new text track's readiness state to loaded.
Set the new text track's mode to the mode consistent with the user's preferences and the requirements of the relevant specification for the data.
For instance, if there are no other active subtitles, and this is a forced subtitle track (a subtitle track giving subtitles in the audio track's primary language, but only for audio that is actually in another language), then those subtitles might be activated here.
Add the new text track to the media element's list of text tracks.
Fire a trusted event with the name addtrack
, that does not bubble and is not cancelable, and that uses
the TrackEvent
interface, with the track
attribute initialised to the text track's TextTrack
object, at the
media element's textTracks
attribute's
TextTrackList
object.
When a track
element is created, it must be associated with a new text
track (with its value set as defined below) and its corresponding new
TextTrack
object.
The text track kind is determined from the state of the element's kind
attribute according to the following table; for a state given
in a cell of the first column, the kind is the string given
in the second column:
State | String |
---|---|
Subtitles | subtitles
|
Captions | captions
|
Descriptions | descriptions
|
Chapters | chapters
|
Metadata | metadata
|
The text track label is the element's track label.
The text track language is the element's track language, if any, or the empty string otherwise.
As the kind
, label
,
and srclang
attributes are set, changed, or removed, the
text track must update accordingly, as per the definitions above.
Changes to the track URL are handled in the algorithm below.
The text track readiness state is initially not loaded, and the text track mode is initially disabled.
The text track list of cues is initially empty. It is dynamically modified when the referenced file is parsed. Associated with the list are the rules for updating the text track rendering appropriate for the format in question; for WebVTT, this is the rules for updating the display of WebVTT text tracks. [WEBVTT]
When a track
element's parent element changes and the new parent is a media
element, then the user agent must add the track
element's corresponding
text track to the media element's list of text tracks, and
then queue a task to fire a trusted event with the name addtrack
, that does not bubble and is not cancelable, and that uses
the TrackEvent
interface, with the track
attribute initialised to the text track's TextTrack
object, at the
media element's textTracks
attribute's
TextTrackList
object.
When a track
element's parent element changes and the old parent was a media
element, then the user agent must remove the track
element's corresponding
text track from the media element's list of text tracks,
and then queue a task to fire a trusted event with the name removetrack
, that does not bubble and is not cancelable, and that
uses the TrackEvent
interface, with the track
attribute initialised to the text track's
TextTrack
object, at the media element's textTracks
attribute's TextTrackList
object.
When a text track corresponding to a track
element is added to a
media element's list of text tracks, the user agent must queue a
task to run the following steps for the media element:
If the element's blocked-on-parser flag is true, abort these steps.
If the element's did-perform-automatic-track-selection flag is true, abort these steps.
Honor user preferences for automatic text track selection for this element.
When the user agent is required to honor user preferences for automatic text track selection for a media element, the user agent must run the following steps:
Perform automatic text track selection for subtitles
and captions
.
If there are any text tracks in the media
element's list of text tracks whose text track kind is metadata
that correspond to track
elements with a default
attribute set whose text
track mode is set to disabled, then set the
text track mode of all such tracks to
Set the element's did-perform-automatic-track-selection flag to true.
When the steps above say to perform automatic text track selection for one or more text track kinds, it means to run the following steps:
Let candidates be a list consisting of the text tracks in the media element's list of text tracks whose text track kind is one of the kinds that were passed to the algorithm, if any, in the order given in the list of text tracks.
If candidates is empty, then abort these steps.
If any of the text tracks in candidates have a text track mode set to showing, abort these steps.
If the user has expressed an interest in having a track from candidates enabled based on its text track kind, text track language, and text track label, then set its text track mode to showing.
For example, the user could have set a browser preference to the effect of "I want French captions whenever possible", or "If there is a subtitle track with 'Commentary' in the title, enable it", or "If there are audio description tracks available, enable one, ideally in Swiss German, but failing that in Standard Swiss German or Standard German".
Otherwise, if there are any text tracks in candidates that correspond to track
elements with a default
attribute set whose text track mode is
set to disabled, then set the text track
mode of the first such track to showing.
When a text track corresponding to a track
element experiences any of
the following circumstances, the user agent must start the track
processing
model for that text track and its track
element:
track
element is created.track
element's parent element changes and the new parent is a media
element.When a user agent is to start the track
processing model for a
text track and its track
element, it must run the following algorithm.
This algorithm interacts closely with the event loop mechanism; in particular, it has
a synchronous section (which is triggered as part of the event loop
algorithm). The steps in that section are marked with ⌛.
If another occurrence of this algorithm is already running for this text
track and its track
element, abort these steps, letting that other algorithm
take care of this element.
If the text track's text track mode is not set to one of or showing, abort these steps.
If the text track's track
element does not have a media
element as a parent, abort these steps.
Run the remainder of these steps in parallel, allowing whatever caused these steps to run to continue.
Top: Await a stable state. The synchronous section consists of the following steps. (The steps in the synchronous section are marked with ⌛.)
⌛ Set the text track readiness state to loading.
⌛ If the track
element's parent is a media element then
let CORS mode be the state of the parent media element's crossorigin
content attribute. Otherwise, let CORS mode be No CORS.
End the synchronous section, continuing the remaining steps in parallel.
If URL is not the empty string, perform a potentially CORS-enabled
fetch of URL, with the mode being CORS mode, the origin being the origin of the
track
element's node document, and the default origin behaviour set
to fail.
The resource obtained in this fashion, if any, contains the text track data. If any data is obtained, it is by definition CORS-same-origin (cross-origin resources that are not suitably CORS-enabled do not get this far).
The tasks queued by the fetching algorithm on the networking task source to process the data as it is being fetched must determine the type of the resource. If the type of the resource is not a supported text track format, the load will fail, as described below. Otherwise, the resource's data must be passed to the appropriate parser (e.g. the WebVTT parser) as it is received, with the text track list of cues being used for that parser's output. [WEBVTT]
The appropriate parser will incrementally update the text track list of cues during these networking task source tasks, as each such task is run with whatever data has been received from the network).
This specification does not currently say whether or how to check the MIME types of text tracks, or whether or how to perform file type sniffing using the actual file data. Implementors differ in their intentions on this matter and it is therefore unclear what the right solution is. In the absence of any requirement here, the HTTP specification's strict requirement to follow the Content-Type header prevails ("Content-Type specifies the media type of the underlying data." ... "If and only if the media type is not given by a Content-Type field, the recipient MAY attempt to guess the media type via inspection of its content and/or the name extension(s) of the URI used to identify the resource.").
If the fetching algorithm fails for any reason (network error,
the server returns an error code, a cross-origin check fails, etc), or if URL is the empty string, then queue a task to first change the
text track readiness state to failed to
load and then fire a simple event named error
at the track
element. This task must use the DOM manipulation task source.
If the fetching algorithm does not fail, but the
type of the resource is not a supported text track format, or the file was not successfully
processed (e.g. the format in question is an XML format and the file contained a well-formedness
error that the XML specification requires be detected and reported to the application), then the
task that is queued by the
networking task source in which the aforementioned problem is found must change the
text track readiness state to failed to
load and fire a simple event named error
at the track
element.
If the fetching algorithm does not fail, and the file was
successfully processed, then the final task that is queued by the networking task source, after it has
finished parsing the data, must change the text track readiness state to loaded, and fire a simple event named load
at the track
element.
If, while the fetching algorithm is active, either:
...then the user agent must abort the fetching algorithm,
discarding any pending tasks generated by that algorithm (and
in particular, not adding any cues to the text track list of cues after the moment
the URL changed), and then queue a task that first changes the text track
readiness state to failed to load and
then fires a simple event named error
at the track
element. This task must use the DOM manipulation task source.
Wait until the text track readiness state is no longer set to loading.
Wait until the track URL is no longer equal to URL, at the same time as the text track mode is set to or showing.
Jump to the step labeled top.
Whenever a track
element has its src
attribute
set, changed, or removed, the user agent must immediately empty the element's text
track's text track list of cues. (This also causes the algorithm above to stop
adding cues from the resource being obtained using the previously given URL, if any.)
How a specific format's text track cues are to be interpreted for the purposes of processing by an HTML user agent is defined by that format. In the absence of such a specification, this section provides some constraints within which implementations can attempt to consistently expose such formats.
To support the text track model of HTML, each unit of timed data is converted to a text track cue. Where the mapping of the format's features to the aspects of a text track cue as defined in this specification are not defined, implementations must ensure that the mapping is consistent with the definitions of the aspects of a text track cue as defined above, as well as with the following constraints:
Should be set to the empty string if the format has no obvious analogue to a per-cue identifier.
Should be set to false.
interface TextTrackList : EventTarget { readonly attribute unsigned long length; getter TextTrack (unsigned long index); TextTrack? getTrackById(DOMString id); attribute EventHandler onchange; attribute EventHandler onaddtrack; attribute EventHandler onremovetrack; };
textTracks
. length
Returns the number of text tracks associated with the media element (e.g. from track
elements). This is the number of text tracks in the media element's list of text tracks.
textTracks[
n ]
Returns the TextTrack
object representing the nth text track in the media element's list of text tracks.
textTracks
. getTrackById
( id )Returns the TextTrack
object with the given identifier, or null if no track has that identifier.
A TextTrackList
object represents a dynamically updating list of text tracks in a given order.
The textTracks
attribute of media elements must return a TextTrackList
object
representing the TextTrack
objects of the text tracks
in the media element's list of text tracks, in the same order as in the
list of text tracks.
The length
attribute of a
TextTrackList
object must return the number of text
tracks in the list represented by the TextTrackList
object.
The supported property indices of a TextTrackList
object at any
instant are the numbers from zero to the number of text tracks in
the list represented by the TextTrackList
object minus one, if any. If there are no
text tracks in the list, there are no supported property
indices.
To determine the value of an indexed property of a TextTrackList
object for a given index index, the user agent must return the indexth text track in the list represented by the
TextTrackList
object.
The getTrackById(id)
method must return the first TextTrack
in the
TextTrackList
object whose id
IDL attribute
would return a value equal to the value of the id argument. When no tracks
match the given argument, the method must return null.
enum TextTrackMode { "disabled", "hidden", "showing" }; enum TextTrackKind { "subtitles", "captions", "descriptions", "chapters", "metadata" }; interface TextTrack : EventTarget { readonly attribute TextTrackKind kind; readonly attribute DOMString label; readonly attribute DOMString language; readonly attribute DOMString id; readonly attribute DOMString inBandMetadataTrackDispatchType; attribute TextTrackMode mode; readonly attribute TextTrackCueList? cues; readonly attribute TextTrackCueList? activeCues; void addCue(TextTrackCue cue); void removeCue(TextTrackCue cue); attribute EventHandler oncuechange; };
addTextTrack
( kind [, label [, language ] ] )Creates and returns a new TextTrack
object, which is also added to the
media element's list of text tracks.
kind
Returns the text track kind string.
label
Returns the text track label, if there is one, or the empty string otherwise (indicating that a custom label probably needs to be generated from the other attributes of the object if the object is exposed to the user).
language
Returns the text track language string.
id
Returns the ID of the given track.
For in-band tracks, this is the ID that can be used with a fragment identifier if the format
supports the Media Fragments URI syntax, and that can be used with the getTrackById()
method. [MEDIAFRAG]
For TextTrack
objects corresponding to track
elements, this is the
ID of the track
element.
inBandMetadataTrackDispatchType
Returns the text track in-band metadata track dispatch type string.
mode
[ = value ]Returns the text track mode, represented by a string from the following list:
disabled
"The text track disabled mode.
The
mode.showing
"The text track showing mode.
Can be set, to change the mode.
cues
Returns the text track list of cues, as a TextTrackCueList
object.
activeCues
Returns the text track cues from the text track
list of cues that are currently active (i.e. that start before the current playback
position and end after it), as a TextTrackCueList
object.
addCue
( cue )Adds the given cue to textTrack's text track list of cues.
removeCue
( cue )Removes the given cue from textTrack's text track list of cues.
The addTextTrack(kind, label, language)
method of media elements, when invoked, must run the following steps:
Create a new TextTrack
object.
Create a new text track corresponding to the new object, and set its text track kind to kind, its text track label to label, its text track language to language, its text track readiness state to the text track loaded state, its text track mode to the mode, and its text track list of cues to an empty list.
Initially, the text track list of cues is not associated with any rules for updating the text track rendering. When a text track cue is added to it, the text track list of cues has its rules permanently set accordingly.
Add the new text track to the media element's list of text tracks.
Queue a task to fire a trusted event with the name addtrack
, that does not bubble and is not cancelable, and
that uses the TrackEvent
interface, with the track
attribute initialised to the new text
track's TextTrack
object, at the media element's textTracks
attribute's TextTrackList
object.
Return the new TextTrack
object.
The kind
attribute must return the
text track kind of the text track that the TextTrack
object
represents.
The label
attribute must return the
text track label of the text track that the TextTrack
object represents.
The language
attribute must return the
text track language of the text track that the TextTrack
object represents.
The id
attribute returns the track's
identifier, if it has one, or the empty string otherwise. For tracks that correspond to
track
elements, the track's identifier is the value of the element's id
attribute, if any. For in-band tracks, the track's identifier is
specified by the media resource. If the media resource is in a format
that supports the Media Fragments URI fragment identifier syntax, the identifier
returned for a particular track must be the same identifier that would enable the track if used as
the name of a track in the track dimension of such a fragment identifier. [MEDIAFRAG]
The inBandMetadataTrackDispatchType
attribute must return the text track in-band metadata track dispatch type of the
text track that the TextTrack
object represents.
The mode
attribute, on getting, must return
the string corresponding to the text track mode of the text track that
the TextTrack
object represents, as defined by the following list:
disabled
"hidden
"showing
"On setting, if the new value isn't equal to what the attribute would currently return, the new value must be processed as follows:
disabled
"Set the text track mode of the text track that the
TextTrack
object represents to the text track disabled mode.
Set the text track mode of the text track that the
TextTrack
object represents to the mode.
showing
"Set the text track mode of the text track that the
TextTrack
object represents to the text track showing mode.
If the text track mode of the text track that the
TextTrack
object represents is not the text track disabled mode, then
the cues
attribute must return a
live TextTrackCueList
object that represents the subset of the
text track list of cues of the text track that the
TextTrack
object represents whose end
times occur at or after the earliest possible position when the script
started, in text track cue order. Otherwise, it must return null. For each TextTrack
object, when an
object is returned, the same TextTrackCueList
object must be returned each time.
The earliest possible position when the script started is whatever the earliest possible position was the last time the event loop reached step 1.
If the text track mode of the text track that the
TextTrack
object represents is not the text track disabled mode, then
the activeCues
attribute must return a
live TextTrackCueList
object that represents the subset of the
text track list of cues of the text track that the
TextTrack
object represents whose active flag was set when the script
started, in text track cue order. Otherwise, it must return null. For each TextTrack
object, when an
object is returned, the same TextTrackCueList
object must be returned each time.
A text track cue's active flag was set when the script started if its text track cue active flag was set the last time the event loop reached step 1.
The addCue(cue)
method
of TextTrack
objects, when invoked, must run the following steps:
If the text track list of cues does not yet have any associated rules for updating the text track rendering, then associate the text track list of cues with the rules for updating the text track rendering appropriate to cue.
If text track list of cues' associated rules for updating the text
track rendering are not the same rules for updating the text track rendering
as appropriate for cue, then throw an InvalidStateError
exception and abort these steps.
If the given cue is in a text track list of cues, then remove cue from that text track list of cues.
Add cue to the method's TextTrack
object's text
track's text track list of cues.
The removeCue(cue)
method of TextTrack
objects, when invoked, must run the following steps:
If the given cue is not currently listed in the method's
TextTrack
object's text track's text track list of cues,
then throw a NotFoundError
exception and abort these steps.
Remove cue from the method's TextTrack
object's
text track's text track list of cues.
In this example, an audio
element is used to play a specific sound-effect from a
sound file containing many sound effects. A cue is used to pause the audio, so that it ends
exactly at the end of the clip, even if the browser is busy running some script. If the page had
relied on script to pause the audio, then the start of the next clip might be heard if the
browser was not able to run the script at the exact time specified.
var sfx = new Audio('sfx.wav'); var sounds = sfx.addTextTrack('metadata'); // add sounds we care about function addFX(start, end, name) { var cue = new VTTCue(start, end, ''); cue.id = name; cue.pauseOnExit = true; sounds.addCue(cue); } addFX(12.783, 13.612, 'dog bark'); addFX(13.612, 15.091, 'kitten mew')) function playSound(id) { sfx.currentTime = sounds.getCueById(id).startTime; sfx.play(); } // play a bark as soon as we can sfx.oncanplaythrough = function () { playSound('dog bark'); } // meow when the user tries to leave window.onbeforeunload = function () { playSound('kitten mew'); return 'Are you sure you want to leave this awesome page?'; }
interface TextTrackCueList { readonly attribute unsigned long length; getter TextTrackCue (unsigned long index); TextTrackCue? getCueById(DOMString id); };
length
Returns the number of cues in the list.
Returns the text track cue with index index in the list. The cues are sorted in text track cue order.
getCueById
( id )Returns the first text track cue (in text track cue order) with text track cue identifier id.
Returns null if none of the cues have the given identifier or if the argument is the empty string.
A TextTrackCueList
object represents a dynamically updating list of text track cues in a given order.
The length
attribute must return
the number of cues in the list represented by the
TextTrackCueList
object.
The supported property indices of a TextTrackCueList
object at any
instant are the numbers from zero to the number of cues in the
list represented by the TextTrackCueList
object minus one, if any. If there are no
cues in the list, there are no supported property
indices.
To determine the value of an indexed property for a given index index, the user agent must return the indexth text track
cue in the list represented by the TextTrackCueList
object.
The getCueById(id)
method, when called with an argument other than the empty string,
must return the first text track cue in the list represented by the
TextTrackCueList
object whose text track cue identifier is id, if any, or null otherwise. If the argument is the empty string, then the method
must return null.
interface TextTrackCue : EventTarget { readonly attribute TextTrack? track; attribute DOMString id; attribute double startTime; attribute double endTime; attribute boolean pauseOnExit; attribute EventHandler onenter; attribute EventHandler onexit; };
Returns the TextTrack
object to which this
text track cue belongs, if any, or null
otherwise.
Returns the text track cue identifier.
Can be set.
Returns the text track cue start time, in seconds.
Can be set.
Returns the text track cue end time, in seconds.
Can be set.
Returns true if the text track cue pause-on-exit flag is set, false otherwise.
Can be set.
The track
attribute, on getting, must
return the TextTrack
object of the text track in whose list of cues the text track cue that the
TextTrackCue
object represents finds itself, if any; or null otherwise.
The id
attribute, on getting, must return
the text track cue identifier of the text track cue that the
TextTrackCue
object represents. On setting, the text track cue
identifier must be set to the new value.
The startTime
attribute, on
getting, must return the text track cue start time of the text track cue
that the TextTrackCue
object represents, in seconds. On setting, the text track
cue start time must be set to the new value, interpreted in seconds; then, if the
TextTrackCue
object's text track cue is in a text track's
list of cues, and that text track is in
a media element's list of text tracks, and the media
element's show poster flag is not set, then run the time marches on steps for that media element.
The endTime
attribute, on getting,
must return the text track cue end time of the text track cue that the
TextTrackCue
object represents, in seconds. On setting, the text track cue end
time must be set to the new value, interpreted in seconds; then, if the
TextTrackCue
object's text track cue is in a text track's
list of cues, and that text track is in
a media element's list of text tracks, and the media
element's show poster flag is not set, then run the time marches on steps for that media element.
The pauseOnExit
attribute, on
getting, must return true if the text track cue pause-on-exit flag of the text
track cue that the TextTrackCue
object represents is set; or false otherwise.
On setting, the text track cue pause-on-exit flag must be set if the new value is
true, and must be unset otherwise.
Chapters are segments of a media resource with a given title. Chapters can be nested, in the same way that sections in a document outline can have subsections.
Each text track cue in a text track being used for describing chapters has three key features: the text track cue start time, giving the start time of the chapter, the text track cue end time, giving the end time of the chapter, and the text track rules for extracting the chapter title.
The rules for constructing the chapter tree from a text track are as follows. They produce a potentially nested list of chapters, each of which have a start time, end time, title, and a list of nested chapters. This algorithm discards cues that do not correctly nest within each other, or that are out of order.
Let list be a copy of the list of cues of the text track being processed.
Remove from list any text track cue whose text track cue end time is before its text track cue start time.
Let output be an empty list of chapters, where a chapter is a record consisting of a start time, an end time, a title, and a (potentially empty) list of nested chapters. For the purpose of this algorithm, each chapter also has a parent chapter.
Let current chapter be a stand-in chapter whose start time is negative infinity, whose end time is positive infinity, and whose list of nested chapters is output. (This is just used to make the algorithm easier to describe.)
Loop: If list is empty, jump to the step labeled end.
Let current cue be the first cue in list, and then remove it from list.
If current cue's text track cue start time is less than the start time of current chapter, then return to the step labeled loop.
While current cue's text track cue start time is greater than or equal to current chapter's end time, let current chapter be current chapter's parent chapter.
If current cue's text track cue end time is greater than the end time of current chapter, then return to the step labeled loop.
Create a new chapter new chapter, whose start time is current cue's text track cue start time, whose end time is current cue's text track cue end time, whose title is the result of running current cue's text track rules for extracting the chapter title, and whose list of nested chapters is empty.
Append new chapter to current chapter's list of nested chapters, and let current chapter be new chapter's parent.
Let current chapter be new chapter.
Return to the step labeled loop.
End: Return output.
The following snippet of a WebVTT file shows how nested chapters can be marked up. The file describes three 50-minute chapters, "Astrophysics", "Computational Physics", and "General Relativity". The first has three subchapters, the second has four, and the third has two. [WEBVTT]
WEBVTT 00:00:00.000 --> 00:50:00.000 Astrophysics 00:00:00.000 --> 00:10:00.000 Introduction to Astrophysics 00:10:00.000 --> 00:45:00.000 The Solar System 00:00:00.000 --> 00:10:00.000 Coursework Description 00:50:00.000 --> 01:40:00.000 Computational Physics 00:50:00.000 --> 00:55:00.000 Introduction to Programming 00:55:00.000 --> 01:30:00.000 Data Structures 01:30:00.000 --> 01:35:00.000 Answers to Last Exam 01:35:00.000 --> 01:40:00.000 Coursework Description 01:40:00.000 --> 02:30:00.000 General Relativity 01:40:00.000 --> 02:00:00.000 Tensor Algebra 02:00:00.000 --> 02:30:00.000 The General Relativistic Field Equations
The following are the event handlers that (and their corresponding event handler event types) must be supported, as event handler IDL
attributes, by all objects implementing the TextTrackList
interface:
Event handler | Event handler event type |
---|---|
onchange | change
|
onaddtrack | addtrack
|
onremovetrack | removetrack
|
The following are the event handlers that (and their corresponding event handler event types) must be supported, as event handler IDL
attributes, by all objects implementing the TextTrack
interface:
Event handler | Event handler event type |
---|---|
oncuechange | cuechange
|
The following are the event handlers that (and their corresponding event handler event types) must be supported, as event handler IDL
attributes, by all objects implementing the TextTrackCue
interface:
Event handler | Event handler event type |
---|---|
onenter | enter
|
onexit | exit
|
This section is non-normative.
Text tracks can be used for storing data relating to the media data, for interactive or augmented views.
For example, a page showing a sports broadcast could include information about the current score. Suppose a robotics competition was being streamed live. The image could be overlayed with the scores, as follows:
In order to make the score display render correctly whenever the user seeks to an arbitrary point in the video, the metadata text track cues need to be as long as is appropriate for the score. For example, in the frame above, there would be maybe one cue that lasts the length of the match that gives the match number, one cue that lasts until the blue alliance's score changes, and one cue that lasts until the red alliance's score changes. If the video is just a stream of the live event, the time in the bottom right would presumably be automatically derived from the current video time, rather than based on a cue. However, if the video was just the highlights, then that might be given in cues also.
The following shows what fragments of this could look like in a WebVTT file:
WEBVTT ... 05:10:00.000 --> 05:12:15.000 matchtype:qual matchnumber:37 ... 05:11:02.251 --> 05:11:17.198 red:78 05:11:03.672 --> 05:11:54.198 blue:66 05:11:17.198 --> 05:11:25.912 red:80 05:11:25.912 --> 05:11:26.522 red:83 05:11:26.522 --> 05:11:26.982 red:86 05:11:26.982 --> 05:11:27.499 red:89 ...
The key here is to notice that the information is given in cues that span the length of time to which the relevant event applies. If, instead, the scores were given as zero-length (or very brief, nearly zero-length) cues when the score changes, for example saying "red+2" at 05:11:17.198, "red+3" at 05:11:25.912, etc, problems arise: primarily, seeking is much harder to implement, as the script has to walk the entire list of cues to make sure that no notifications have been missed; but also, if the cues are short it's possible the script will never see that they are active unless it listens to them specifically.
When using cues in this manner, authors are encouraged to use the cuechange
event to update the current annotations. (In
particular, using the timeupdate
event would be less
appropriate as it would require doing work even when the cues haven't changed, and, more
importantly, would introduce a higher latency between when the metatata cues become active and
when the display is updated, since timeupdate
events
are rate-limited.)
The controls
attribute is a boolean
attribute. If present, it indicates that the author has not provided a scripted controller
and would like the user agent to provide its own set of controls.
If the attribute is present, or if scripting is disabled for the media element, then the user agent should expose a user interface to the user. This user interface should include features to begin playback, pause playback, seek to an arbitrary position in the content (if the content supports arbitrary seeking), change the volume, change the display of closed captions or embedded sign-language tracks, select different audio tracks or turn on audio descriptions, and show the media content in manners more suitable to the user (e.g. full-screen video or in an independent resizable window). Other controls may also be made available.
If the media element has a current media controller, then the user
agent should expose audio tracks from all the slaved media elements (although
avoiding duplicates if the same media resource is being used several times). If a
media resource's audio track exposed in this way has no known name, and it is the
only audio track for a particular media element, the user agent should use the
element's title
attribute, if any, as the name (or as part of the
name) of that track.
Even when the attribute is absent, however, user agents may provide controls to affect playback
of the media resource (e.g. play, pause, seeking, and volume controls), but such features should
not interfere with the page's normal rendering. For example, such features could be exposed in the
media element's context menu. The user agent may implement this simply by exposing a user interface to the user as
described above (as if the controls
attribute was
present).
If the user agent exposes a user interface to
the user by displaying controls over the media element, then the user agent
should suppress any user interaction events while the user agent is interacting with this
interface. (For example, if the user clicks on a video's playback control, mousedown
events and so forth would not simultaneously be fired at
elements on the page.)
Where possible (specifically, for starting, stopping, pausing, and unpausing playback, for seeking, for changing the rate of playback, for fast-forwarding or rewinding, for listing, enabling, and disabling text tracks, and for muting or changing the volume of the audio), user interface features exposed by the user agent must be implemented in terms of the DOM API described above, so that, e.g., all the same events fire.
When a media element has a current media controller, the user agent's
user interface for pausing and unpausing playback, for seeking, for changing the rate of playback,
for fast-forwarding or rewinding, and for muting or changing the volume of audio of the entire
group must be implemented in terms of the MediaController
API exposed on that
current media controller. When a media element has a current media
controller, and all the slaved media elements of that
MediaController
are paused, the user agent should also unpause all the slaved
media elements when the user invokes a user agent interface control for beginning
playback.
The "play" function in the user agent's interface must set the playbackRate
attribute to the value of the defaultPlaybackRate
attribute before invoking the play()
method. When a media element has a current media controller, the
attributes and method with those names on that MediaController
object must be used.
Otherwise, the attributes and method with those names on the media element itself
must be used.
Features such as fast-forward or rewind must be implemented by only changing the playbackRate
attribute (and not the defaultPlaybackRate
attribute). Again, when a media element has a current media controller,
the attributes with those names on that MediaController
object must be used;
otherwise, the attributes with those names on the media element itself must be used.
When a media element has a current media controller, seeking must be
implemented in terms of the currentTime
attribute on that MediaController
object. Otherwise, the user agent must directly
seek to the requested position in the media
element's media timeline. For media resources where seeking to an arbitrary
position would be slow, user agents are encouraged to use the approximate-for-speed flag
when seeking in response to the user manipulating an approximate position interface such as a seek
bar.
When a media element has a current media controller, user agents may
additionally provide the user with controls that directly manipulate an individual media
element without affecting the MediaController
, but such features are
considered relatively advanced and unlikely to be useful to most users.
The activation behaviour of a media element that is exposing a user interface to the user must be to run the following steps:
If the media element has a current media controller, and that
current media controller is a restrained media controller, then invoke
the play()
method of the
MediaController
and abort these steps.
If the media element has a current media controller,
and that current media controller is a paused media controller, all
of the MediaController
's slaved media elements have ended
playback, and the media controller playback rate is positive or zero, then
seek the media controller to zero.
If the media element has a current media controller,
and that current media controller is a paused media controller, then
invoke the unpause()
method of the
MediaController
and abort these steps.
If the media element has a current media controller,
then that current media controller is a playing media controller;
invoke the pause()
method of the
MediaController
and abort these steps.
If
the media element's paused
attribute is true,
then invoke the play()
method on the media
element and abort these steps.
Invoke the pause()
method on the media
element.
For the purposes of listing chapters in the media resource, only text tracks in the media element's list of text tracks
that are showing and whose text track kind is
chapters
should be used. Such tracks must be
interpreted according to the rules for constructing the chapter tree from a text
track. When seeking in response to a user maniplating a chapter selection interface, user
agents should not use the approximate-for-speed flag.
The controls
IDL attribute must
reflect the content attribute of the same name.
volume
[ = value ]Returns the current playback volume, as a number in the range 0.0 to 1.0, where 0.0 is the quietest and 1.0 the loudest.
Can be set, to change the volume.
Throws an IndexSizeError
exception if the new value is not in the range 0.0 .. 1.0.
muted
[ = value ]Returns true if audio is muted, overriding the volume
attribute, and false if the volume
attribute is being
honored.
Can be set, to change whether the audio is muted or not.
A media element has a playback volume, which is a fraction in the range 0.0 (silent) to 1.0 (loudest). Initially, the volume should be 1.0, but user agents may remember the last set value across sessions, on a per-site basis or otherwise, so the volume may start at other values.
The volume
IDL attribute must return the
playback volume of any audio portions of the
media element. On setting, if the new value is in the range 0.0 to 1.0 inclusive, the
media element's playback volume must be
set to the new value. If the new value is outside the range 0.0 to 1.0 inclusive, then, on
setting, an IndexSizeError
exception must be thrown instead.
A media element can also be muted. If anything is muting the element, then it is muted. (For example, when the direction of playback is backwards, the element is muted.)
The muted
IDL attribute must return the value
to which it was last set. When a media element is created, if the element has a muted
content attribute specified, then the muted
IDL attribute should be set to true; otherwise, the user
agents may set the value to the user's preferred value (e.g. remembering the last set value across
sessions, on a per-site basis or otherwise). While the muted
IDL attribute is set to true, the media element must be muted.
Whenever either of the values that would be returned by the volume
and muted
IDL
attributes change, the user agent must queue a task to fire a simple
event named volumechange
at the media
element.
An element's effective media volume is determined as follows:
If the user has indicated that the user agent is to override the volume of the element, then the element's effective media volume is the volume desired by the user. Abort these steps.
If the element's audio output is muted, the element's effective media volume is zero. Abort these steps.
If the element has a current media controller and that
MediaController
object's media controller mute override is true, the
element's effective media volume is zero. Abort these steps.
Let volume be the playback volume of the audio portions of the media element, in range 0.0 (silent) to 1.0 (loudest).
If the element has a current media controller, multiply volume by that MediaController
object's media controller
volume multiplier. (The media controller volume multiplier is in the range
0.0 to 1.0, so this can only reduce the value.)
The element's effective media volume is volume, interpreted relative to the range 0.0 to 1.0, with 0.0 being silent, and 1.0 being the loudest setting, values in between increasing in loudness. The range need not be linear. The loudest setting may be lower than the system's loudest possible setting; for example the user could have set a maximum volume.
The muted
content attribute on media elements is a boolean attribute that controls the
default state of the audio output of the media resource, potentially overriding user
preferences.
The defaultMuted
IDL attribute must
reflect the muted
content attribute.
This attribute has no dynamic effect (it only controls the default state of the element).
This video (an advertisement) autoplays, but to avoid annoying users, it does so without sound, and allows the user to turn the sound on.
<video src="adverts.cgi?kind=video" controls autoplay loop muted></video>
Objects implementing the TimeRanges
interface
represent a list of ranges (periods) of time.
interface TimeRanges { readonly attribute unsigned long length; double start(unsigned long index); double end(unsigned long index); };
length
Returns the number of ranges in the object.
start
(index)Returns the time for the start of the range with the given index.
Throws an IndexSizeError
exception if the index is out of range.
end
(index)Returns the time for the end of the range with the given index.
Throws an IndexSizeError
exception if the index is out of range.
The length
IDL attribute must return the
number of ranges represented by the object.
The start(index)
method must return the position of the start of the indexth range represented
by the object, in seconds measured from the start of the timeline that the object covers.
The end(index)
method
must return the position of the end of the indexth range represented by the
object, in seconds measured from the start of the timeline that the object covers.
These methods must throw IndexSizeError
exceptions if called with an index argument greater than or equal to the number of ranges represented by the
object.
When a TimeRanges
object is said to be a normalised TimeRanges
object, the ranges it represents must obey the following criteria:
In other words, the ranges in such an object are ordered, don't overlap, and don't touch (adjacent ranges are folded into one bigger range). A range can be empty (referencing just a single moment in time), e.g. to indicate that only one frame is currently buffered in the case that the user agent has discarded the entire media resource except for the current frame, when a media element is paused.
Ranges in a TimeRanges
object must be inclusive.
Thus, the end of a range would be equal to the start of a following adjacent (touching but not overlapping) range. Similarly, a range covering a whole timeline anchored at zero would have a start equal to zero and an end equal to the duration of the timeline.
The timelines used by the objects returned by the buffered
, seekable
and
played
IDL attributes of media
elements must be that element's media timeline.
TrackEvent
interface[Constructor(DOMString type, optional TrackEventInit eventInitDict)] interface TrackEvent : Event { readonly attribute (VideoTrack or AudioTrack or TextTrack)? track; }; dictionary TrackEventInit : EventInit { (VideoTrack or AudioTrack or TextTrack)? track; };
track
Returns the track object (TextTrack
, AudioTrack
, or
VideoTrack
) to which the event relates.
The track
attribute must return the value
it was initialised to. When the object is created, this attribute must be initialised to null. It
represents the context information for the event.
This section is non-normative.
The following events fire on media elements as part of the processing model described above:
Event name | Interface | Fired when... | Preconditions |
---|---|---|---|
loadstart
| Event
| The user agent begins looking for media data, as part of the resource selection algorithm. | networkState equals NETWORK_LOADING
|
progress
| Event
| The user agent is fetching media data. | networkState equals NETWORK_LOADING
|
suspend
| Event
| The user agent is intentionally not currently fetching media data. | networkState equals NETWORK_IDLE
|
abort
| Event
| The user agent stops fetching the media data before it is completely downloaded, but not due to an error. | error is an object with the code MEDIA_ERR_ABORTED . networkState equals either NETWORK_EMPTY or NETWORK_IDLE , depending on when the download was aborted.
|
error
| Event
| An error occurs while fetching the media data. | error is an object with the code MEDIA_ERR_NETWORK or higher. networkState equals either NETWORK_EMPTY or NETWORK_IDLE , depending on when the download was aborted.
|
emptied
| Event
| A media element whose networkState
was previously not in the NETWORK_EMPTY state has
just switched to that state (either because of a fatal error during load that's about to be
reported, or because the load() method was invoked while
the resource selection algorithm was already
running).
| networkState is NETWORK_EMPTY ; all the IDL attributes are in their
initial states.
|
stalled
| Event
| The user agent is trying to fetch media data, but data is unexpectedly not forthcoming. | networkState is NETWORK_LOADING .
|
loadedmetadata
| Event
| The user agent has just determined the duration and dimensions of the media resource and the text tracks are ready. | readyState is newly equal to HAVE_METADATA or greater for the first time.
|
loadeddata
| Event
| The user agent can render the media data at the current playback position for the first time. | readyState newly increased to HAVE_CURRENT_DATA or greater for the first time.
|
canplay
| Event
| The user agent can resume playback of the media data, but estimates that if playback were to be started now, the media resource could not be rendered at the current playback rate up to its end without having to stop for further buffering of content. | readyState newly increased to HAVE_FUTURE_DATA or greater.
|
canplaythrough
| Event
| The user agent estimates that if playback were to be started now, the media resource could be rendered at the current playback rate all the way to its end without having to stop for further buffering. | readyState is newly equal to HAVE_ENOUGH_DATA .
|
playing
| Event
| Playback is ready to start after having been paused or delayed due to lack of media data. | readyState is newly equal to or greater than
HAVE_FUTURE_DATA and paused is false, or paused is newly false and readyState is equal to or greater than HAVE_FUTURE_DATA . Even if this event fires, the
element might still not be potentially playing, e.g. if the element is
blocked on its media controller (e.g. because the current media
controller is paused, or another slaved media
element is stalled somehow, or because the media resource has no data
corresponding to the media controller position), or the element is paused
for user interaction or paused for in-band content.
|
waiting
| Event
| Playback has stopped because the next frame is not available, but the user agent expects that frame to become available in due course. | readyState is equal to or less than HAVE_CURRENT_DATA , and paused is false. Either seeking is true, or the current playback position
is not contained in any of the ranges in buffered . It
is possible for playback to stop for other reasons without paused being false, but those reasons do not fire this event
(and when those situations resolve, a separate playing
event is not fired either): e.g. the element is newly blocked on its media
controller, or playback ended, or playback
stopped due to errors, or the element has paused for user interaction
or paused for in-band content.
|
seeking
| Event
| The seeking IDL attribute changed to true, and the user agent has started seeking to a new position.
| |
seeked
| Event
| The seeking IDL attribute changed to false after the current playback position was changed.
| |
ended
| Event
| Playback has stopped because the end of the media resource was reached. | currentTime equals the end of the media
resource; ended is true.
|
durationchange
| Event
| The duration attribute has just been updated.
| |
timeupdate
| Event
| The current playback position changed as part of normal playback or in an especially interesting way, for example discontinuously. | |
play
| Event
| The element is no longer paused. Fired after the play()
method has returned, or when the autoplay attribute
has caused playback to begin.
| paused is newly false.
|
pause
| Event
| The element has been paused. Fired after the pause()
method has returned.
| paused is newly true.
|
ratechange
| Event
| Either the defaultPlaybackRate or the
playbackRate attribute has just been updated.
| |
resize
| Event
| One or both of the videoWidth and videoHeight attributes have just been updated.
| Media element is a video element; readyState is not HAVE_NOTHING
|
volumechange
| Event
| Either the volume attribute or the muted attribute has changed. Fired after the relevant
attribute's setter has returned.
|
The following events fire on MediaController
objects:
Event name | Interface | Fired when... |
---|---|---|
emptied
| Event
| All the slaved media elements newly have readyState set to HAVE_NOTHING or greater, or there are no longer any
slaved media elements.
|
loadedmetadata
| Event
| All the slaved media elements newly have readyState set to HAVE_METADATA or greater.
|
loadeddata
| Event
| All the slaved media elements newly have readyState set to HAVE_CURRENT_DATA or greater.
|
canplay
| Event
| All the slaved media elements newly have readyState set to HAVE_FUTURE_DATA or greater.
|
canplaythrough
| Event
| All the slaved media elements newly have readyState set to HAVE_ENOUGH_DATA .
|
playing
| Event
| The MediaController is no longer a blocked media controller.
|
waiting
| Event
| The MediaController is now a blocked media controller.
|
ended
| Event
| All the slaved media elements have newly ended playback; the
MediaController has reached the end of all the slaved media elements.
|
durationchange
| Event
| The duration attribute has just been
updated.
|
timeupdate
| Event
| The media controller position changed. |
play
| Event
| The paused attribute is newly false.
|
pause
| Event
| The paused attribute is newly true.
|
ratechange
| Event
| Either the defaultPlaybackRate
attribute or the playbackRate attribute
has just been updated.
|
volumechange
| Event
| Either the volume attribute or the muted attribute has just been updated.
|
The following events fire on AudioTrackList
, VideoTrackList
, and
TextTrackList
objects:
Event name | Interface | Fired when... |
---|---|---|
change
| Event
| One or more tracks in the track list have been enabled or disabled. |
addtrack
| TrackEvent
| A track has been added to the track list. |
removetrack
| TrackEvent
| A track has been removed from the track list. |
The following event fires on TextTrack
objects and track
elements:
Event name | Interface | Fired when... |
---|---|---|
cuechange
| Event
| One or more cues in the track have become active or stopped being active. |
The following events fire on TextTrackCue
objects:
Event name | Interface | Fired when... |
---|---|---|
enter
| Event
| The cue has become active. |
exit
| Event
| The cue has stopped being active. |
The main security and privacy implications of the video
and audio
elements come from the ability to embed media cross-origin. There are two directions that threats
can flow: from hostile content to a victim page, and from a hostile page to victim content.
If a victim page embeds hostile content, the threat is that the content might contain scripted
code that attempts to interact with the Document
that embeds the content. To avoid
this, user agents must ensure that there is no access from the content to the embedding page. In
the case of media content that uses DOM concepts, the embedded content must be treated as if it
was in its own unrelated top-level browsing context.
For instance, if an SVG animation was embedded in a video
element,
the user agent would not give it access to the DOM of the outer page. From the perspective of
scripts in the SVG resource, the SVG file would appear to be in a lone top-level browsing context
with no parent.
If a hostile page embeds victim content, the threat is that the embedding page could obtain
information from the content that it would not otherwise have access to. The API does expose some
information: the existence of the media, its type, its duration, its size, and the performance
characteristics of its host. Such information is already potentially problematic, but in practice
the same information can more or less be obtained using the img
element, and so it
has been deemed acceptable.
However, significantly more sensitive information could be obtained if the user agent further
exposes metadata within the content such as subtitles or chapter titles. Such information is
therefore only exposed if the video resource passes a CORS resource sharing check.
The crossorigin
attribute allows authors to control
how this check is performed. [FETCH]
Without this restriction, an attacker could trick a user running within a corporate network into visiting a site that attempts to load a video from a previously leaked location on the corporation's intranet. If such a video included confidential plans for a new product, then being able to read the subtitles would present a serious confidentiality breach.
This section is non-normative.
Playing audio and video resources on small devices such as set-top boxes or mobile phones is
often constrained by limited hardware resources in the device. For example, a device might only
support three simultaneous videos. For this reason, it is a good practice to release resources
held by media elements when they are done playing, either by
being very careful about removing all references to the element and allowing it to be garbage
collected, or, even better, by removing the element's src
attribute and any source
element descendants, and invoking the element's load()
method.
Similarly, when the playback rate is not exactly 1.0, hardware, software, or format limitations can cause video frames to be dropped and audio to be choppy or muted.
This section is non-normative.
How accurately various aspects of the media element API are implemented is considered a quality-of-implementation issue.
For example, when implementing the buffered
attribute,
how precise an implementation reports the ranges that have been buffered depends on how carefully
the user agent inspects the data. Since the API reports ranges as times, but the data is obtained
in byte streams, a user agent receiving a variable-bit-rate stream might only be able to determine
precise times by actually decoding all of the data. User agents aren't required to do this,
however; they can instead return estimates (e.g. based on the average bit rate seen so far) which
get revised as more information becomes available.
As a general rule, user agents are urged to be conservative rather than optimistic. For example, it would be bad to report that everything had been buffered when it had not.
Another quality-of-implementation issue would be playing a video backwards when the codec is designed only for forward playback (e.g. there aren't many key frames, and they are far apart, and the intervening frames only have deltas from the previous frame). User agents could do a poor job, e.g. only showing key frames; however, better implementations would do more work and thus do a better job, e.g. actually decoding parts of the video forwards, storing the complete frames, and then playing the frames backwards.
Similarly, while implementations are allowed to drop buffered data at any time (there is no requirement that a user agent keep all the media data obtained for the lifetime of the media element), it is again a quality of implementation issue: user agents with sufficient resources to keep all the data around are encouraged to do so, as this allows for a better user experience. For example, if the user is watching a live stream, a user agent could allow the user only to view the live video; however, a better user agent would buffer everything and allow the user to seek through the earlier material, pause it, play it forwards and backwards, etc.
When multiple tracks are synchronised with a MediaController
, it is possible for
scripts to add and remove media elements from the MediaController
's list of
slaved media elements, even while these tracks are playing. How smoothly the media
plays back in such situations is another quality-of-implementation issue.
When a media element that is paused is removed from a document and not reinserted before the next time the event loop reaches step 1, implementations that are resource constrained are encouraged to take that opportunity to release all hardware resources (like video planes, networking resources, and data buffers) used by the media element. (User agents still have to keep track of the playback position and so forth, though, in case playback is later restarted.)
map
elementname
— Name of image map to reference from the usemap
attributeinterface HTMLMapElement : HTMLElement { attribute DOMString name; readonly attribute HTMLCollection areas; readonly attribute HTMLCollection images; };
The map
element, in conjunction with an img
element and any
area
element descendants, defines an image map. The element
represents its children.
The name
attribute gives the map a name so that
it can be referenced. The attribute must be present and must have a non-empty value with no space characters. The value of the name
attribute must not be a compatibility-caseless match for the value of the name
attribute of another map
element in the same
document. If the id
attribute is also specified, both attributes must
have the same value.
areas
Returns an HTMLCollection
of the area
elements in the
map
.
images
Returns an HTMLCollection
of the img
and object
elements that use the map
.
The areas
attribute must return an
HTMLCollection
rooted at the map
element, whose filter matches only
area
elements.
The images
attribute must return an
HTMLCollection
rooted at the Document
node, whose filter matches only
img
and object
elements that are associated with this map
element according to the image map processing model.
The IDL attribute name
must reflect
the content attribute of the same name.
Image maps can be defined in conjunction with other content on the page, to ease maintenance. This example is of a page with an image map at the top of the page and a corresponding set of text links at the bottom.
<!DOCTYPE HTML> <TITLE>Babies™: Toys</TITLE> <HEADER> <H1>Toys</H1> <IMG SRC="/images/menu.gif" ALT="Babies™ navigation menu. Select a department to go to its page." USEMAP="#NAV"> </HEADER> ... <FOOTER> <MAP NAME="NAV"> <P> <A HREF="/clothes/">Clothes</A> <AREA ALT="Clothes" COORDS="0,0,100,50" HREF="/clothes/"> | <A HREF="/toys/">Toys</A> <AREA ALT="Toys" COORDS="100,0,200,50" HREF="/toys/"> | <A HREF="/food/">Food</A> <AREA ALT="Food" COORDS="200,0,300,50" HREF="/food/"> | <A HREF="/books/">Books</A> <AREA ALT="Books" COORDS="300,0,400,50" HREF="/books/"> </P> </MAP> </FOOTER>
area
elementmap
element ancestor or a template
element ancestor.alt
— Replacement text for use when images are not availablecoords
— Coordinates for the shape to be created in an image mapshape
— The kind of shape to be created in an image maphref
— Address of the hyperlinktarget
— Browsing context for hyperlink navigationdownload
— Whether to download the resource instead of navigating to it, and its file name if soping
— URLs to pingrel
— Relationship between the document containing the hyperlink and the destination resourcehreflang
— Language of the linked resourcetype
— Hint for the type of the referenced resourceinterface HTMLAreaElement : HTMLElement { attribute DOMString alt; attribute DOMString coords; attribute DOMString shape; attribute DOMString target; attribute DOMString download; [PutForwards=value] attribute DOMSettableTokenList ping; attribute DOMString rel; readonly attribute DOMTokenList relList; attribute DOMString hreflang; attribute DOMString type; }; HTMLAreaElement implements URLUtils;
The area
element represents either a hyperlink with some text and a
corresponding area on an image map, or a dead area on an image map.
An area
element with a parent node must have a map
element ancestor
or a template
element ancestor.
If the area
element has an href
attribute, then the area
element represents a hyperlink. In this case,
the alt
attribute must be present. It specifies the
text of the hyperlink. Its value must be text that, when presented with the texts specified for
the other hyperlinks of the image map, and with the alternative text of the image,
but without the image itself, provides the user with the same kind of choice as the hyperlink
would when used without its text but with its shape applied to the image. The alt
attribute may be left blank if there is another area
element in the same image map that points to the same resource and has a non-blank
alt
attribute.
If the area
element has no href
attribute, then the area represented by the element cannot be selected, and the alt
attribute must be omitted.
In both cases, the shape
and coords
attributes specify the area.
The shape
attribute is an enumerated
attribute. The following table lists the keywords defined for this attribute. The states
given in the first cell of the rows with keywords give the states to which those keywords map.
Some of the keywords are non-conforming, as noted in the last
column.
State | Keywords | Notes |
---|---|---|
Circle state | circle
| |
circ
| Non-conforming | |
Default state | default
| |
Polygon state | poly
| |
polygon
| Non-conforming | |
Rectangle state | rect
| |
rectangle
| Non-conforming |
The attribute may be omitted. The missing value default is the rectangle state.
The coords
attribute must, if specified,
contain a valid list of integers. This attribute gives the coordinates for the shape
described by the shape
attribute. The
processing for this attribute is described as part of the image map processing
model.
In the circle state, area
elements must
have a coords
attribute present, with three integers, the
last of which must be non-negative. The first integer must be the distance in CSS pixels from the
left edge of the image to the center of the circle, the second integer must be the distance in CSS
pixels from the top edge of the image to the center of the circle, and the third integer must be
the radius of the circle, again in CSS pixels.
In the default state state, area
elements must not have a coords
attribute. (The area is the
whole image.)
In the polygon state, area
elements must
have a coords
attribute with at least six integers, and the
number of integers must be even. Each pair of integers must represent a coordinate given as the
distances from the left and the top of the image in CSS pixels respectively, and all the
coordinates together must represent the points of the polygon, in order.
In the rectangle state, area
elements must
have a coords
attribute with exactly four integers, the
first of which must be less than the third, and the second of which must be less than the fourth.
The four points must represent, respectively, the distance from the left edge of the image to the
left side of the rectangle, the distance from the top edge to the top side, the distance from the
left edge to the right side, and the distance from the top edge to the bottom side, all in CSS
pixels.
When user agents allow users to follow hyperlinks or
download hyperlinks created using the
area
element, as described in the next section, the href
, target
, download
, and ping
attributes decide how the link is followed. The rel
, hreflang
, and type
attributes may be used to indicate to the user the likely nature of the target resource before the
user follows the link.
The target
, download
, ping
,
rel
, hreflang
, and type
attributes must be omitted if the href
attribute is not
present.
If the itemprop
attribute is specified on an
area
element, then the href
attribute must
also be specified.
The activation behaviour of area
elements is to run the following
steps:
If the area
element's node document is not fully active,
then abort these steps.
If the area
element has a download
attribute and the algorithm is not allowed to show a popup; or, if the user has not indicated a specific browsing context for following the link, and the element's target
attribute is present, and applying the rules
for choosing a browsing context given a browsing context name, using the value of the
target
attribute as the browsing context name, would
result in there not being a chosen browsing context, then run these substeps:
If there is an entry settings object, throw an
InvalidAccessError
exception.
Abort these steps without following the hyperlink.
Otherwise, the user agent must follow the
hyperlink or download the hyperlink created
by the area
element, if any, and as determined by the download
attribute and any expressed user
preference.
The IDL attributes alt
, coords
, target
, download
, ping
, rel
,
hreflang
, and type
, each must reflect the respective
content attributes of the same name.
The IDL attribute shape
must
reflect the shape
content attribute.
The IDL attribute relList
must
reflect the rel
content attribute.
The area
element also supports the URLUtils
interface. [URL]
When the element is created, and whenever the element's href
content attribute is set, changed, or removed, the user
agent must invoke the element's URLUtils
interface's set the input algorithm with the value of the href
content attribute, if any, or the null value otherwise,
as the given value.
The element's URLUtils
interface's get the
base algorithm must simply return the element's base URL.
The element's URLUtils
interface's query
encoding is the document's character encoding.
When the element's URLUtils
interface invokes its update steps with a string value, the user
agent must set the element's href
content attribute to
the string value.
An image map allows geometric areas on an image to be associated with hyperlinks.
An image, in the form of an img
element or an object
element
representing an image, may be associated with an image map (in the form of a map
element) by specifying a usemap
attribute on
the img
or object
element. The usemap
attribute, if specified, must be a valid
hash-name reference to a map
element.
Consider an image that looks as follows:
If we wanted just the coloured areas to be clickable, we could do it as follows:
<p> Please select a shape: <img src="shapes.png" usemap="#shapes" alt="Four shapes are available: a red hollow box, a green circle, a blue triangle, and a yellow four-pointed star."> <map name="shapes"> <area shape=rect coords="50,50,100,100"> <!-- the hole in the red box --> <area shape=rect coords="25,25,125,125" href="red.html" alt="Red box."> <area shape=circle coords="200,75,50" href="green.html" alt="Green circle."> <area shape=poly coords="325,25,262,125,388,125" href="blue.html" alt="Blue triangle."> <area shape=poly coords="450,25,435,60,400,75,435,90,450,125,465,90,500,75,465,60" href="yellow.html" alt="Yellow star."> </map> </p>
If an img
element or an object
element representing an image has a
usemap
attribute specified, user agents must process it
as follows:
Parse the attribute's value using the rules for parsing a hash-name reference to a map
element, with the element's node document as the context node.
This will return either an element (the map) or
null.
If that returned null, then abort these steps. The image is not associated with an image map after all.
Otherwise, the user agent must collect all the area
elements that are
descendants of the map. Let those be the areas.
Having obtained the list of area
elements that form the image map (the areas), interactive user agents must process the list in one of two ways.
If the user agent intends to show the text that the img
element represents, then
it must use the following steps.
In user agents that do not support images, or that have images disabled,
object
elements cannot represent images, and thus this section never applies (the
fallback content is shown instead). The following steps therefore only apply to
img
elements.
Remove all the area
elements in areas that have no href
attribute.
Remove all the area
elements in areas that have no alt
attribute, or whose alt
attribute's value is the empty string, if there is another area
element in
areas with the same value in the href
attribute and with a non-empty alt
attribute.
Each remaining area
element in areas represents a
hyperlink. Those hyperlinks should all be made available to the user in a manner
associated with the text of the img
.
In this context, user agents may represent area
and img
elements
with no specified alt
attributes, or whose alt
attributes are the empty string or some other non-visible text, in a user-agent-defined fashion
intended to indicate the lack of suitable author-provided text.
If the user agent intends to show the image and allow interaction with the image to select
hyperlinks, then the image must be associated with a set of layered shapes, taken from the
area
elements in areas, in reverse tree order (so the last
specified area
element in the map is the bottom-most shape, and
the first element in the map, in tree order, is the top-most shape).
Each area
element in areas must be processed as follows to
obtain a shape to layer onto the image:
Find the state that the element's shape
attribute
represents.
Use the rules for parsing a list of integers to parse the element's coords
attribute, if it is present, and let the result be the
coords list. If the attribute is absent, let the coords
list be the empty list.
If the number of items in the coords list is less than the minimum number
given for the area
element's current state, as per the following table, then the
shape is empty; abort these steps.
State | Minimum number of items |
---|---|
Circle state | 3 |
Default state | 0 |
Polygon state | 6 |
Rectangle state | 4 |
Check for excess items in the coords list as per the entry in the
following list corresponding to the shape
attribute's
state:
If the shape
attribute represents the rectangle state, and the first number in the list is
numerically less than the third number in the list, then swap those two numbers around.
If the shape
attribute represents the rectangle state, and the second number in the list is
numerically greater than the fourth number in the list, then swap those two numbers around.
If the shape
attribute represents the circle state, and the third number in the list is less than
or equal to zero, then the shape is empty; abort these steps.
Now, the shape represented by the element is the one described for the entry in the list
below corresponding to the state of the shape
attribute:
Let x be the first number in coords, y be the second number, and r be the third number.
The shape is a circle whose center is x CSS pixels from the left edge of the image and y CSS pixels from the top edge of the image, and whose radius is r pixels.
The shape is a rectangle that exactly covers the entire image.
Let xi be the (2i)th entry in coords, and yi be the (2i+1)th entry in coords (the first entry in coords being the one with index 0).
Let the coordinates be (xi, yi), interpreted in CSS pixels measured from the top left of the image, for all integer values of i from 0 to (N/2)-1, where N is the number of items in coords.
The shape is a polygon whose vertices are given by the coordinates, and whose interior is established using the even-odd rule. [GRAPHICS]
Let x1 be the first number in coords, y1 be the second number, x2 be the third number, and y2 be the fourth number.
The shape is a rectangle whose top-left corner is given by the coordinate (x1, y1) and whose bottom right corner is given by the coordinate (x2, y2), those coordinates being interpreted as CSS pixels from the top left corner of the image.
For historical reasons, the coordinates must be interpreted relative to the
displayed image after any stretching caused by the CSS 'width' and 'height' properties
(or, for non-CSS browsers, the image element's width
and height
attributes — CSS browsers map those attributes to the
aforementioned CSS properties).
Browser zoom features and transforms applied using CSS or SVG do not affect the coordinates.
Pointing device interaction with an image associated with a set of layered shapes per the above
algorithm must result in the relevant user interaction events being first fired to the top-most
shape covering the point that the pointing device indicated, if any, or to the image element
itself, if there is no shape covering that point. User agents may also allow individual
area
elements representing hyperlinks to be selected
and activated (e.g. using a keyboard).
Because a map
element (and its area
elements) can be
associated with multiple img
and object
elements, it is possible for an
area
element to correspond to multiple focusable areas
of the document.
Image maps are live; if the DOM is mutated, then the user agent must act as if it had rerun the algorithms for image maps.
The math
element from the MathML namespace
falls into the embedded content, phrasing content, and flow
content categories for the purposes of the content models in this specification.
This specification refers to several specific MathML elements, in particular:
annotation-xml
,
merror
,
mi
,
mn
,
mo
,
ms
, and
mtext
.
When the MathML annotation-xml
element contains
elements from the HTML namespace, such elements must all be flow
content. [MATHML]
When the MathML token elements (mi
, mo
, mn
, ms
,
and mtext
) are descendants of HTML elements, they may contain
phrasing content elements from the HTML namespace. [MATHML]
User agents must handle text other than inter-element whitespace found in MathML
elements whose content models do not allow straight text by pretending for the purposes of MathML
content models, layout, and rendering that that text is actually wrapped in an mtext
element in the MathML namespace. (Such text is not,
however, conforming.)
User agents must act as if any MathML element whose contents does not match the element's
content model was replaced, for the purposes of MathML layout and rendering, by an merror
element in the MathML namespace containing some
appropriate error message.
To enable authors to use MathML tools that only accept MathML in its XML form, interactive HTML user agents are encouraged to provide a way to export any MathML fragment as an XML namespace-well-formed XML fragment.
The semantics of MathML elements are defined by the MathML specification and other applicable specifications. [MATHML]
Here is an example of the use of MathML in an HTML document:
<!DOCTYPE html> <html> <head> <title>The quadratic formula</title> </head> <body> <h1>The quadratic formula</h1> <p> <math> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mo form="prefix">−</mo> <mi>b</mi> <mo>±</mo> <msqrt> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>−</mo> <mn>4</mn> <mo></mo> <mi>a</mi> <mo></mo> <mi>c</mi> </msqrt> </mrow> <mrow> <mn>2</mn> <mo></mo> <mi>a</mi> </mrow> </mfrac> </math> </p> </body> </html>
The svg
element from the SVG namespace falls into the
embedded content, phrasing content, and flow content
categories for the purposes of the content models in this specification.
To enable authors to use SVG tools that only accept SVG in its XML form, interactive HTML user agents are encouraged to provide a way to export any SVG fragment as an XML namespace-well-formed XML fragment.
When the SVG foreignObject
element contains elements from the HTML
namespace, such elements must all be flow content. [SVG]
The content model for title
elements in the SVG namespace
inside HTML documents is phrasing content. (This further constrains the
requirements given in the SVG specification.)
The semantics of SVG elements are defined by the SVG specification and other applicable specifications. [SVG]
getSVGDocument
()getSVGDocument
()getSVGDocument
()Returns the Document
object, in the case of iframe
, embed
, or object
elements being used to embed SVG images.
The getSVGDocument()
method must run
the following steps:
If the element has no nested browsing context, then return null and abort these steps.
If the active document of the nested browsing context does not have the same effective script origin as the element's node document, then return null and abort these steps.
If the nested browsing context's active document was created by
the page load processing model for XML files section because
the sniffed type of the resource in the navigate algorithm was
image/svg+xml
, then return that Document
object and abort these
steps.
Otherwise, return null.
Author requirements: The width
and height
attributes on img
, iframe
,
embed
, object
, video
, and, when their type
attribute is in the Image Button state, input
elements may be
specified to give the dimensions of the visual content of the element (the width and height
respectively, relative to the nominal direction of the output medium), in CSS pixels. The
attributes, if specified, must have values that are valid non-negative integers.
The specified dimensions given may differ from the dimensions specified in the resource itself, since the resource may have a resolution that differs from the CSS pixel resolution. (On screens, CSS pixels have a resolution of 96ppi, but in general the CSS pixel resolution depends on the reading distance.) If both attributes are specified, then one of the following statements must be true:
The target ratio is the ratio of the intrinsic width to the intrinsic
height in the resource. The specified width and specified
height are the values of the width
and height
attributes respectively.
The two attributes must be omitted if the resource in question does not have both an intrinsic width and an intrinsic height.
If the two attributes are both zero, it indicates that the element is not intended for the user (e.g. it might be a part of a service to count page views).
The dimension attributes are not intended to be used to stretch the image.
User agent requirements: User agents are expected to use these attributes as hints for the rendering.
The width
and height
IDL attributes on the iframe
,
embed
, object
, and video
elements must reflect
the respective content attributes of the same name.
For iframe
, embed
, and object
the IDL
attributes are DOMString
; for video
the IDL attributes are unsigned long
.
The corresponding IDL attributes for img
and
input
elements are defined in those respective elements'
sections, as they are slightly more specific to those elements' other behaviours.